M/710 Magnum

. 300 Win. Mag.

\& 7mm Rem. Mag.

Design Acceptance Test (DAT \#1)

10/16/01

Requaington Anuas Cownpary Trac.
 Research \& Development TECHnical Center 315 West Ring Road

APPROVALS 4
INTRODUCTION: 5
INITIAL TESTS, MEASUREMENTS AND INSPECTIONS: 6
HEADSPACE AND PROOF -: 6
TLW0683A - Measure Headspace6
TLW0683B - Proof TestTLW0683C - Re-Measure Headspace after Proof.TLW0683AH - Extended Proof Test - 100 Rounds per Rifle
FORCES
TLW0683D - Measure Firing Pin Indent: 11
TLW0683E - Measure Sear/Trigger Engagement and Sear Lift: 12
TLW0683F - Measure Trigger Pull Forces: 13
TLW0683G - Measure Safe On/Off Forces:...... 13
TLW0683H - Measure Bolt Lift and Rolt Closingererces 14
TLW0683I - Measure Magazieespring Foret, 15
 16
 17
 19
WW0683K Chamber caskt
19
19
 4LW0683L Fore Biameter : 20
TMW0683y-Groove Diameter 21
TLW0683N - Twist Rate (. 300 Win. Mag. and the 7 mm Rem. Mag.): 21
TLW06830 - Magazine Capacity Test: 22
FUNCTION \& ENDURANCE TESTING: 22
FUNCTION AND ENDURANCE TESTING - 22
TLW0683P - Basic Jack Function Test (to 100 Rounds): 22
TLW0683Q - Basic Shoulder Function Test: 24
TLW0683R - Extended Function \& Endurance: 25
TLW0683S - Clean Rifles and Inspect: 28
ACCURACY TESTING: 29
ACCURACY TESTING-: 29
TLW0683T - Group Size at 100 yards 29
ENVIRONMENTAL TESTING: 30
J.R.Snedeker Page 2 of 41 10/16/01
TLW 0683
 Revision \# 1.0

Remington Aras Conapany Inc. RESEARCH \& DEVELOPMENT TECHNICAL CENTER 315 West Ring Road

TEMPERATURE TESTING-: 30
TLW0683U - Hot Function Test: 30
TLW0683V - Cold Function Test: 31
TLW0683AF - Thermal Cycle Test: 31
ABUSIVE TESTING 33
IMPACT TESTING - : 33
TLW0683W - SAAMI Drop Test : 33
TLW0683X - SAAMI Jar-Off Test : 34
TLW0683Y - SAAMI Rotation: 35
TLW0683Z-Extended SAAMI Jar-Off Test: (for Information only): 36
TLW0683AA - Extended SAAMI Rotation Test: (for Information only):

\qquad 38 TLW0683AB - Extended SAAMI Drop Test: (for Information only):
INTENTIONAL ABUSE \qquad
TLW0683AC - Obstructed Bore Test: .
TLW0683AG - High Pressure Test:

\qquad

Renaingtora Amans Couny
 RESEARCH \& DEVELOPMENT TECHNICAL CENTER 315 WEST RING PROAD

M/71010 Magnum Design Acceptance Test Plan \#1

Approvals

A meeting was held on \qquad , 2001 to discuss the scheduled M/710 Magnum DAT \#1 test. The purpose of this meeting was to define the test requirements for this Design Acceptance Test (DAT) scheduled topstat in October. During this meeting the test plan was reviewed step by step to dermine yhataditiong testing might be required to adequately test the product. This document lists thests procedures that have been agreed to by all meeting participants. Successful completion of these tests yill quatify the M/710 Magnum. for Trial \& Pilot evaluation.

The following people have reviewedtios docimentand agree to this DAT \#1 test protocol.

Dale Danner

\square

Scott Fivaz / Jiminedeker

\qquad
Test \& Measurement Lab

Danny Diaz / Michael Keency

\qquad
Firearms Development

M/710 Magnum

DESIGN ACCEPTANCE TEST PLAN - DAT \#1

Introduction:

Upon successfully completing the proof test including one rifle subjected to a 100 profendurance test, a 100 round per rifle jack-function test is planned for the 15 rifle (per caliber) sample determine the fubable malfunction rate. This test will determine if the expenditure of further amounts of ammuntiong justified by the performance of the product. Upon passing the jack-function test whe riffes will be subjected to 20 rounds per rifle test shot from the shoulder (standing position) in theitong ranye. these tests ate conducted to confirm that each rifle functions as intended when shot in the same manneras wodd be expected to be used by the customer.

Various inspection points and safety
After Measurements, prefliminary proof and finction tests the rifles will be subjected to standard rifle

Initial Tests, Measurements and Inspections:

HEADSPACE AND PROOF -:

TLW0683A - Measure Headspace

All test samples will be measured for headspace before being tested in either the jack or shot from the shoulder. The chamber, bolt face \& locking lugs on both the bolt and the receiver will be inspeeted forsthe presence of dirt or debris. If dirt or debris that could affect headspace measuretigent is present then tiliese areas of the firearm will be cleaned before using the gauges.

Method:

- Graduated headspace gauges (if available) wilibe used afid the headspace measurements will be recorded to the nearest .001 " increment as hicheded by the gauge mire . 300 Win. Mag. chamber drawing LB-506 and the 7 mm Rem. Mag. chamber drawing LB-167 will'be used for referenced chamber dimensions.
- The headspace measuremendstwill be recordea to the nearest .001 " increment as indicated by the gauge.
- If the mieasurenentis taken at the start of the test then headspace should be less than or equal to Min. +

- As "he test progresses, headspace will be taken at each "Safety Inspection" scheduled in the plan and, in adidition, at each "Clean \& Inspect" activity scheduled by the plan.
\$woth he readings for each firearm will be recorded on the "Daily Test Data Sheet" to be kept with each firearm in the accompanying data packet.
- For any firearms where the headspace is changing at each inspection point the firearm will be withdrawn from test and examined for the cause.
- In no case will any firearm in the test program be allowed to continue test if the headspace exceeds Min. + .007"'

Data Required:

Rengingtion Arwas Cowapany Ing.
 Research \& Development Technical Center 315 West Ring Road

- Rifle serial number
- Headspace measurements for each sample

TLW0683B - Proof Test

All test sample firearms will be subjected to a standard .300 Win. Mag. or 7 mm Rem. Mag. Factory Proof Load, as appropriate, shot in the blow-up room using a lanyard. This procedure will be completed before the firearm can be used for any additional firing tests.

Before proof testing the firearm should be inspected for:

- Barrel Obstructions
- Bore and chamber are free of grease or oil and other depris.

For fully assembled firearms, one definitive proof cartridgeshouldbe fired in each firearm. Definitive proof ammunition is to be used in accordance with the "Handling of Anmunition" procedure defined in the SAAMI Technical Committee Manual, Volume III, Sectien II, Page 2410 as follows.
a. "Cartridges tobe tested shoulabe pacedin a vertical position with primer end down in a reeesed holding block."
y slowly end over end, in a vertical plane through 360° pausing momentarily when the powerer is at the bullet end and again when the powder is at the primer end."
"The cartridge is then rotated slowly, a minimum amount to enter chamber, keeping primer end in lowest possible position until inserted gently and carefully into the chamber."
d. "The cartridge should be seated in the chamber as far as practicable with the fingers. The bolt or breech mechanism should be closed gently in order not to disturb the position of the powder in the cartridge case. The object of this method of handling cartridges is to position the propellant powder at the primer end of the cartridge case by permitting it to fall gently against the primer and while rotating the case."

Renaington Areas Conapany Trace.
 Research 8 © DEVELOPMENT TECHNICAL CENTER 315 West Ring Road

Note that these procedures for proof testing were developed to consistently position the propellant thereby providing greater consistency of proof pressures. Failure to follow this procedure during the definitive proof testing of each chamber of the firearm could result in pressure levels significantly below the minimum proof pressure specification as determined for the cartridge.

Any firearms components, such as bolts, bolt heads, receivers including chambers, etc. which were previously subjected to proof testing and, which subsequently, have any proof sensitive components changed, altered, or substituted, should be re-proofed.

Method:

- Record headspace before proof testing (see previous procedure "T LW0683A - Measure Headspace. ${ }^{\text {W }}$
- After firing the proof round, the firearm will be carefully examined toddermine any bandage fo the product has occurred due to exposure to the proof pressure. This inspection includes:
- Visual inspection for damage,
- damaged receiver or bolt, especially the locking lugs on the bolt ot the receiver
- bulged chamber or bore; split, cracked or otherwise damaged barrel,
- broken stock,

- any other part stibjequed to the proofigestiess, which can be visually examined for damage.
- Any "suspicious" areas should be" submitted to magna-flux inspection before proceeding.
- Magitiolux til but heads after Proof.
\rightarrow at a failure ${ }_{40}$ such ens: 2

Expanded cartridge head.

- Excessive roughness, rings, or bulging, which would affect extraction.
- Beginning separation or material stretching in front of the case head indicating excessive headspace or excessive pressure as stated above.
- Any cartridge case failure indicating a firearm fault.
- In addition, the spent proof round should be examined for the presence of unusual deformation, split case or split head, and for any evidence of a pierced primer. Any of these conditions may be indicative that highpressure gases may have vented into the action where other damage to components may have occurred.
- Take note of any indication of significant gas leakage, if present, it may indicate that the firearm was not subjected to full proof pressures and the proof test would then be invalid and would require re-proofing.

Renaington Aruas Company Inc.
 Research \& Development Technical Center 315 West Ring Road

- A firearm is only properly proofed when the cartridge has been fired without evidence of significant gas leakage.
- Save the spent proof case in a Zip-Lock plastic bag and label and place in the data packet for further reference. If any parts were broken or otherwise damaged, place these parts in the same bag as the proof case and label. Place a label on the firearm and withdraw the firearm from the test.
- Each sample firearms' headspace (see following procedure "TLW0683C-Re-Measure Headspace after Proof") must remain in range from min. to min. +.005 " after proofing, with no individual firearm's headspace to grow more than .002 " after firing one proof round. After successful proofing, the right lug on the bolt head will be marked in the center (i.e. center of top to bottom and center or fronto rear) of theglug with a center punch to indicate that is has been proofed.
- After proof, if the firearm passes the inspection and headspace has been measured (seegnextsection of test plan), stamp the firearm on the barrel with an authorized Remingtoingropf stamp. Locate the proof mark on the right rear of the barrel in the specified location for the Remington prodef stamp. DO NOT STAMP if the headspace exceeds Min +.007 ".
- Because of the higher pressuics 1 mvolyed in shooghe proof cartridges, adequate precautions, both mechanical and proceduralyshould betakegto protect personnel performing the firearms proof testing. To this end, the fiearm shout be securely mounted, completely shielded from the operator and firing accomplished bya remote contitol method.
Deta Required:
- Riflederial ntinber
- R R 解ord and note any headspace growth and the corresponding round level.
. Record significant gas leakage and/or firearm damage.
- Record any case damage or other ammunition related malfunctions.
- Record any damage to the firearm resulting from the proof test. Document with Photographs is necessary.

TLW0683C - Re-Measure Headspace after Proof

All test samples will be re-measured for headspace after proof and before being tested in either the jack or shot from the shoulder. The chamber, bolt face \& locking block/locking notch will be inspected for the

Remaington Amas Conapany Tng.
 RESEARCH \& DEVELOPMENT TECHNICAL CENTER 315 West Ring Road

presence of dirt or debris. If dirt or debris that could affect headspace measurement is present then these areas of the firearm will be thoroughly cleaned before using the gauges.

Method:

- Graduated headspace gauges (if available) will be used and the headspace measurements will be recorded to the nearest .001 " increment as indicated by the gauge. The .300 Win. Mag. chamber drawing LB-506 and the 7 mm Rem. Mag. chamber drawing LB-167 will be used for referenced chamber dimensions.
- The headspace measurement taken prior to the proof test should be less than or equal to Min. $+905^{\prime \prime}$. If, after proof, the growth of the headspace is more than +.002 " from the pre-proof condition, then stapeand review the results with the test manager before continuing to ,
- In no case should the measurement for headspace after initial proof test be greater thangin +005 " for a new firearm.
- If at any time during the test program the headspaceexceeds a maximuidup of Min. +.007 " do not continue to fire the rifle, tag the gun with a label reading "Donot Shoot ThisFirearm - Exceeds Maximum Allowable Headspace" and return the firearin tothe Test Mander womatisposition.

Data Required:

- Rifle serial nurger
- Recefd and note ${ }^{2} y$ yegdspace growth and round level.

TLW0689AH-Extended Proof Test - 100 Rounds per Rifle

Method:

- Fire proof rounds through rifle in the blow-up room using a lanyard using the following schedule:
\(\left.\begin{array}{|c|c|c|}\hline Number of Rifles \& \begin{array}{c}Cumulative Number of Proof

\end{array} \& Rounds\end{array}\right]\)| Type of Receiver Material |
| :---: |
| 1 |

- For the first 10 rounds, measure the headspace after each round.
- For rounds 11 to 25 , measure the headspace after every 5 rounds.
- For rounds 26 to 100 measure the headspace after the $100^{\text {th }}$ round.
J.R.Snedeker

Revision \# 1.0

Renaington Arnas Gonpany Inc.

Research \& Development Technical Center 315 West Ring Road

- In no case can the headspace on a given rifle exceed $.007^{\prime \prime}$
- Examine all rifles visually for signs of damage before proceeding to the jack fired test following.
- For the four rifles that are subjected to the 100 total proof rounds, examine the receivers (outside surface) and the bolt heads using the Dye Penetrant method of non-destructive testing.

Data Required:

- Rifle serial numbers
- Headspace measurements per the schedule outlined above.
- Notes of the visual examine.
- The results of the Dye Penetrant examination.

FORCES -:

TLW0683D - Measure Firing Pin Indent:

The fining pirindent will be measured for each of the sample rifles using SAAMI qualified copper crushers The average of thite trials per sample rifle will be calculated. The Average of three indents must be

Wheng copper crushers, "bumish" both ends of the crusher slug by gently rubbing both ends on the granite base of the dial indicator stand (use outside edge of the plate.)

- Place the copper crusher in either the .300 Win. Mag. or the 7 mm Rem. Mag. crusher holder. Place the crusher holder on the base of the dial indicator and zero the dial indicator with the point of the indicator in the approximate center of the crusher.
- Carefully, with the gun held so that the muzzle is pointed down toward the floor, gently insert the crusher holder into the chamber, being sure that the extractor clearance cut on the crusher is properly oriented relative to the extractor position.
- While maintaining a firm hold on the bolt handle, gently, and slowly ease the bolt forward to the full forward position and then rotate down being sure that the action locks fully.
 Revision \# 1.0

Ruenaington Arnas Conapany Ina.
 RESEARCH \& DEVELOPMENT TECHNICAL CENTER 315 West Ring Road

- Holding the firearm in a horizontal and level position, and pointing the firearm in a safe direction, pull the trigger until the firing pin releases.
- Carefully open the action and remove the crusher holder, being careful not to drop the copper crusher.
- Leave the crusher in the holder and place under the dial indicator.
- Move the crusher holder so that the point of the dial indicator finds the deepest portion of the firing pin indent.
- Record the dial indicator reading to the nearest .001 ".
- Repeat procedure two more times and record the dial indicator readings using a new copper crushef for each trial.
- Each firearm sample should have three readings that will be averaged.
- Record all three readings for the data file.

Data Required:

- Rifle serial number
- Each of the three trial indents
- The calculated average indeit by riflés

TLW0683E MeasirireSeatitritger Engagement and Sear Lift:

 $.020^{\prime \prime}{ }^{4} .025^{\prime \prime}$ measured with the bolt in the fully closed and locked position.

Metiod for measuring Scar/Trigger Engagement:

- The 30" Optical comparator will be used to measure the engagement at 50X magnification.
- With the barreled action held firmly in position, the barreled action will be aligned such that the action is held perpendicular to the lens in both the horizontal and vertical planes.
- With action closed and locked, the safety in the "fire" position, measure the amount of overlap between the sear and the trigger.

Method for measuring Sear Lift:

- Remove the bolt from the action.
- Place the Safety in the "Off-Safe" (i.e. "Fire") position.

Renailagton Aruas Conapany rac.

Research 8: Development Technical Center 315 West Ring Road

- With the action held firmly in a horizontal position pre-load the sear in the downward position using a small screwdriver and with a dial indicator zeroed on the top of the sear, gently rotate the Safety to the "On-Safe" position.
- Record the amount of vertical movement of the sear.
- Minimum sear lift is 0.006 "

Data Required:

- Rifle Serial number
- Record Sear/Trigger Engagement
- Record Sear Lift

TLW0683F - Measure Trigger Pull Forces:

Trigger pull (force and displacement required to manualty operate the arigger)
Method:

- Trigger pull is to be performed to thesAMI standardenorizontal pull at the center of the finger radius of the trigger using the Test Lab pparatus des ded for taking this measurement.
- Use the $1-10$ lb. Cfatillion Force digital force gauge. The spring scale method may also be used.
- Forde is measuree paranet to the bore with the stock assembled to the action.
- Three pulls and to be taken on each sample rifle and the results averaged.
- The average force for the three trials must be between 4.0 lb . and 5.5 lb .

Datate Required:

- Rifle Serial number
- All three data points for each trial rifle
- The average of the three measurements for each sample rifle.

TLW0683G - Measure Safe On/Off Forces:

Using the Chatillion Digital force gauge and the wooden holding fixture used to take trigger pull readings, push the Safe to the "Safe Off" position on each test sample. Complete three trials. Record all three readings for each firearm. Repeat the test, this time pushing the Safe to the "Safe On" position on each trial.

Remington Anas Gonapay Thc.
 RESEARCH 8 DEVELOPMENT TECHNICAL CENTER 315 West Ring Road

Record all three readings. Average each of the three sets of readings in each direction for each test sample. These measurements are for information only. A minimum of 1 lb . force in either direction will be assumed as the reference criteria.

Method:

- Use trigger pull apparatus to hold the rifle for this test.
- Use either the Spring Scale or the Chatillion Digital Force gauge ($0-10 \mathrm{lb}$. range) with the disc point or the " v " shaped point. Use the same tip on all subsequent trials.
- Make three trials in each direction for each sample.
- Average the results of each of the three trials.
- The ISS system will be checked for proper function.

Data Required:

- Rifle serial number
- Each of the three readings for each direction on each \$ample
- The average of each of the the te sets of readings
- The results of the ISS

TLW0683H - Measure Bolt Lift and Bolt Closing Forces :

-

The force required opening the bolt and closing the bolt will be measured for each sample. Both of these forces will be taken with the chamber empty and then repeated, this time with a new dummy round in the chamber. There is not a specification for these forces and the readings will be taken for information only.

Method:

- After locating the rifle in the trigger pull fixture and securely locking in place, (it may be necessary to clamp the fixture to the bench if not already securely fixed in place), locate the hook of the force gauge at the point on the bolt handle just behind the ball.
- With the chamber empty, pull the trigger to release the firing pin. Using the Chatillion gauge, pull the gauge straight up and perpendicular to the bore, measure the force required to open the bolt.

Renayington Anans Gonapany Inc.
 Research \& Development Technical Center 315 West Ring Road

- Lock the firearm in a horizontal position, using the trigger pull holding fixture, (i.e. shooting position) before taking the measurements.
- Take three readings for each gun in the sample.
- Record all readings.
- Repeat the procedure only this time push the bolt closed.
- Note that it may be necessary to start the bolt closed by hand so the firing pin head is depressed sufficiently out of the notch and can start up the cam surface of the bolt as the firing pin is cocked.
- Repeat the above procedure this time with a new, unused dummy round in the chamber.

Data Required:

- Rifle serial number
- Each of the three readings taken for each of the 4 states for each test sample
- The average of each set of three measurements per state

TLW0683I - Measure Magazine Spring Force:

The force produced, bytherompressiofitof the Magazine Spring in the box with the follower attached will be measured. These neasuiements will be taken for information only. There is no specification currently defined for this characteristie

Mehod

- Use fherchatillion TCD200 Spring Testing Machine with the Chatillion Digital Force Gauge ($0-10 \mathrm{lb}$.

- Place the magazine box, bottom side down, on the staging table.
- Zero force gauge with no load applied.
- Lower the gauge until it just touches the magazine follower, approximately in the middle location both side to side and front to rear.
- Zero force gauge again if necessary.
- Lower the gauge $0.200^{\prime \prime}$ and take the spring force measurements.
- Lower the gauge another 1.0 ".
- Take the force measurement at this depressed location of the spring.
- Repeat procedure two additional trials for each box.
J.R.Snedeker

Page 15 of 41
10/16/01
TLW 0683

Remangton Annas Gonyouy Inc.
 RESEARCH \& DEVELOPMENT TECHNICALCENTER 315 West Ring Road

- Average the 3 trials for each box and at each measurement location.

Data Required:

- Force Measurements taken on each trial per box at each of the measurement locations.
- The Average Force measurement per box.
- The serial number of the Chatillion Digital Force Gauge used for the procedure.

TLW0683AD - Safety Operation (S.A.A.M.I.)

This S.A.A.M.I. required test measures the operation of the manual safety to determine if the force required to move the safety from the "safe" to the "fire" position is less thans 1 L. . In adition, an examination of the safety is made to determine if the "fire" and "safe" position of tee safetyare clearly"tiscernible to the user. Finally, a 40-lb. load is applied to the trigger from.several diectionsywith the safety in the "on" or "safe" position to determine that the mechanical operation of the safety is not impunted.

Method:

- Inspect and verify the rifle issiot loađed and the safe is 䒸 the "On-Safe" position.
- With the rifle's safetyin the "Qi-Safe postition, use the Chatillion 10 lb . gauge with a "V" notch attached and carefully push the safety to the "fire" position and measure the force required to move the safety. Perfirm 3 trials for eachefle and record all three force measurements. These will be averaged to determine

- Make awspeific observation as to the position of the "on-safe" and the "fire" and determine if there a discernible "detent" detectable when the safety is moved hetween the two positions. Record the observation for each sample rifle.
- Finally, lock the rifle securely in a holding device and proceed to apply a $40-\mathrm{lb}$. load to the trigger. Place the Chatillion 50 lb . gauge v-notch in each of four locations from the front (or as close as you can get from the front.) Then from the rear of the trigger (or as close as you can get from the rear.) Finish by applying the 40 lb . load to the trigger, first from the left side and then from the right side in turn and apply a $40-\mathrm{lb}$. load. In each application of the $40-\mathrm{lb}$. load, placement of the load should be at about the center of the finger curve of the trigger. After each application of the load test the fire control mechanism by attempting to pull the trigger with the safe in the "on-safe" position and the rifle pointed in a safe direction. Gun must not fire. Push the safety to the "fire" position. Gun must not fire when the safety is moved to the "fire" position.

Page 16 of 41
10/16/01
Rerningon Concemiz

Regaingtona Arugs Cougyany Tac.
 Research \& Development Technical. Center
 315 West Ring Road

Finally, with the rifle still pointed in a safe direction, pull the trigger, the firing pin must release to the fired position.

TLW0683AE-40 lb. Trigger Pull Test (Remington Test)

This test is conducted to determine if the safety mechanism will release the trigger mechanism and cause the firearm to discharge if the trigger is pulled intentionally by the shooter with the safety on the on-Safe" position. In addition, sufficient force is applied to the trigger with the safe in the "On-Safe"position tionge that the trigger dimensions will not change thereby affecting trigger/sear eagagement Priorto startof test verify that trigger pull, engagement and over-travel are within recommended spe⿻ficatione onthe sample rifles.

Method:

- Inspect and verify the rifle is not loaded and the safeis in the "On-Safeqposition.
- Locate the firearm in a vertical position ith the nuzzle pointed up.
- Using the set of plug gauges determite the amountof nimizinum clearance between the rear of the trigger and the inside rear of the trigger gard:This dingiension will be used as a reference to determine if the loading in the hextepshas oformed the trigger.
- Using the "pegbona" "pyprined cases (please refer to procedure TLP 0210.0)- remove the primed case 4t
- With the safein the "On-Safe" position, using the NRA trigger pull rod, load the trigger with a 40-lb. seight.
- BE EXTREMELY CAUIOUS TO STAY CLEAR OF THE MUZZLE IN

CASE THE FIREARM DISCHARGES THE PRIMED CASE.

- Remove the load from the trigger.
- Move the Safety to the "Fire" position, the rifle must not discharge.
- Return the Safety to the "On-Safe" position.
- Carefully remove the rifle from the holding device and with the muzzle pointed in a safe direction, pull the trigger, the rifle must discharge. Extract the shell case.
- Using the plug gauges measure the minimum clearance between the rear of the trigger and the inside rear of the trigger guard.
J.R.Snedeker

Page 17 of 41
10/16/01
TLW 0683

Renaington Apras Cougpawy Inc. Regearch \& Development Technical Center 315 WEST Ring ROAD

- Measure the trigger pull, engagement and over-travel to insure that they have not changed from the beginning of the test.

Data required:

- Rifle serial number
- Measurements of Trigger pull, engagement, over-travel and trigger/trigger guard clearance before and after loading.
- Note that the rifle "fired" or did not fire when the safety was pushed to the "Fire" position.
- Note that the rifle did "fire" when the trigger was pulled.

ERengiagton Arnas Cowapany Tag.

Research \& Development Technical Center 315 West Ring Road

FIREARMS MEASUREMENTS -:

TLW0683K-Chamber cast :

Use the .300 Win. Mag or the 7 mm Rem. Mag.-chamber drawing LB-506 and LB-167 for reference.

Method:

- Make chamber cast using standard procedure
- Use the 30" optical comparator
- Measure the following dimensions: . 300 Win. Mag. $\quad 7 \mathrm{~mm}$ Rem. Mag.
- .514/.516
- .4916/.4901
- 25° Angle
25° Angle
- . 34246441 共
(1)

Data Required:

- R1fe serial numbers
\% Record dimensions requested above.

Test Description:

Note that Cerrosafe ${ }^{\mathrm{TM}}$ has some unique features that make it suitable for making chamber casts. During the first
30 minutes of cooling Cerrosafe ${ }^{\mathrm{TM}}$ shrinks making removal from a rifle chamber easier. After about an hour the cast is exactly the size of the chamber in which it was cast.

Be sure to be use all caution when making chamber casts. Although the material melts at a relatively low temperature, the temperature is still hot enough to cause severe burns if spilled on bare flesh. Use
protective gloves, clothing and safety glasses with side-shields.

Chamber cast procedure:

- Use Cerrosafe ${ }^{\mathrm{TM}}$ chamber casting alloy. As long as it is keep clean, the material can be reused multiple times.
- Clean chamber of the rifle thoroughly and apply a very thin film of oil or graphite.
- Plug the bore of the rifle immediately ahead of the throat with a small rag - but not so tightly it cannot be driven out.
- Melt the Cerrosafe ${ }^{\mathrm{TM}}$ in a clean iron ladle. It will melt between 158° and $190^{\circ} \mathrm{F}$.
- The source of heat should be removed as soon as the alloy is completely digelted at whichitime it is ready to pour.
- If practical, pour the molten Cerrosafe ${ }^{\mathrm{TM}}$ through a Sman tube into the bottom of the cast, gradually removing the tube as the chamber fills. A funnel vithe a heat resistant tube securely attached should work.
- If the barrel is cold, warmit totroom temperature or slightly above room temperature before making the cast.
- Make note of he time of the pour.
- Thesolidifed casting shotild be removed from the chamber before or when it cools to room tepperaturepabout 30 minutes.) If allowed to remain in the chamber for over an hour, it will grip the chamber walls and will be difficult to remove.
- After approximately 30 minutes of cooling time remove the cast from the chamber using a rod or dowel inserted from the muzzle end of the barrel.
- At one hour past the time of pour, the casting will be exactly the size of the chamber. (At the end of 200 hours (a little over a week) it will have expanded approximately $.0025 \%\left(1 / 4^{\text {th }}\right.$ of $\left.1 \%\right)$

TLW0683L - Bore Diameter :

Measure Bore Diameter using standard procedures.
Method:
J.R.Snedeker

TLW 0683
Page 20 of 41
10/16/01
Remagan Conseria. Revision \# 1.0

Rengingtora Arnas Comapayy Lacy RESEARCH \& DEVELOPMENT TECHNICAL CENTER 315 West Ring Road

- Measure . 300 Win. Mag. or the 7 mm Rem. Mag. caliber
- Dimension equals* .300/301 Dimension equals *.277/.278

Data Required:

- Rifle serial numbers
- Measurements of each bore by serial number
*Dimensions to be supplied by Design Engineer.

TLW0683M - Groove Diameter :

Measure Groove Diameter using standard procedures.

Method:

- Measure . 300 Win. Mag. or the 7 mm Rem. Mag.
- Dimension equals * $308 / 309$ - $-(.300$ With. Mag)
- Dimension equals * $2837 / 2842 \%$ (7 mm Rehr Mag)

Data Required:

- Riffer serial numbes
- Me, 多urements of each bore by serial number

TLWW083N - Twist Rate (300 Win. Mag. and the 7mmincm. Mag.):

Measure Twist Rate using standard procedures.

Method:

- Measure 1 turn in $10^{\prime \prime} \pm .25^{\prime \prime}$, RH for the .300 Win. Mag.
- Measure 1 turn in 9-1/4" $\pm .25$ ", RH for the 7 mm Rem. Mag.

Data Required:

- Rifle serial numbers
- Measurements of each bore by serial number

Rewaington Aruas Conapany Inc.
 RESEARCH \& DEVELOPMENT TECHNICAL CENTER 315 WEST RING ROAD

TLW06830-Magazine Capacity Test:

The .300 Win. Mag. or the 7 mm Rem. Mag. rifles with the magazine fully loaded must be able to be inserted into firearm with the bolt closed and in the locked position. The Model 710 must be able to accept 3 rounds in the magazine and with one round in the chamber still be able to close the bolt over a load of 3 rounds.

Method:

- Check rifle for live ammunition
- With muzzle pointed in a safe direction, close the bolt and lock over an empty chamber
- Load 3 dummy rounds into the magazine
- Cycle the 3 dummy rounds through the chamber and eject each round

Data Required:

- Rifle serial number
- Record any failures to load and cycle properlyby box andpifle be conducted. The test will be conducted in the test jacks with the "belly-protectors" in place and fully closed for each shot. All malfunctions and any unusual behavior will be noted on the data forms. The overall average of all sample rifles should be at or below 2-\% malfunction rate. Up to two rifles from the sample of 10 are permitted to be removed from the averaging process if they have excessive malfunction rates relative to the remaining group of 8 samples. These rifles will be investigated by engineering to determine the probable source of the problem and engineering will provide written documentation for possible inclusion in the DAT report. No major mechanical failures are allowed in the test sample. Major mechanical failures are defined as those failures that cannot easily be repaired with simple tools and/or readily available replacement parts. At the

Revision \# 1.0

 Research \& Development Technical Center 315 West Ring Road

conclusion of this test the firearms will be carefully examined for signs of excessive wear, especially with respect to the plastic components.

Method:

- Check each rifle for the presence of the proof stamp(s) - do not shoot unless the stamp(s) are present.
- Check each rifle for headspace
- Draw ammunition from stores - See test manager for ammo types to be used for this test.
- Each tester to have five rifles for test at any given time.
- The muzzle of each rifle will be inserted into the shooting port and the rifle placed securely in thetest jack before the rifle is loaded.
 by hand-feeding single rounds into the chamber.
- Push the safe to the "fire" position, be sure that thembarrel isifarenough within the port hole so that the muzzle will stay in the port when the rifle reooils. If there 's any question, re-adjust the jack into a better position.
- With the lid on the belly protector ched, fire the first Found in the chamber, listen for any off-sounds, and be alert for any other uqusubublavior,
- Open the bolt; © 0 et the spentizound, note any extraction or ejection problems.
- Close the bolt to load thefirst round from the magazine into the chamber, note any feeding or stemming 4 pro\}ems.
- Cointinne to fire the remaining rounds in the magazine until the last round is fired.

Push the Safety to "On Safe" position, the safety will be puished to the fire position at the státit of every five round trial and will be pushed to the On Safe position at the end of every five round trial. Repetitive action of the safety lever on the trigger assembly side-plate needs to be determined.

- After firing twenty rounds (1 box of ammo) the rifle will be checked carefully for the presence of any live ammunition and if empty will be removed from the test jack and placed in the cooling rack. The safety will be in the "On Safe" position and the bolt will be unlocked and fully open at all times. Compressed air may be used, if necessary to cool the inside of the chamber area if the rifle is excessively hot from firing.
- All malfunctions will be recorded on the data sheets.

Data Required:

- Rifle serial number
J.R.Snedeker
Page 23 of 41
TLW 0683
Re:

10/16/01
Revision \# 1.0

Remington Armas Conapany Inc.
 RESEARCH \& DEVELOPMENT TECHNICAL CENTER 315 West Ring Road

- Tester's name
- Date of test firing
- The TLW\#
- The ammunition used for the test with the ammo lot code number of the rounds actually used.
- Any malfunctions noted or other unusual items of note.

TLW0683O - Basic Shoulder Function Test:

To get an early picture of the product's functional capability from thepespective of custemed, 20 round per rifle shoulder function test will be conducted to evaluate the potentiaffor feeging problems. These malfunctions may be different from those noted in the jack test de to shooter reactions to recoil potentially affecting round position in the magazine box. The test will be conducted an the long range shooting from a standing position.

All malfunctions and anymisu behavior wili benoted on the data forms. The overall average of all sample rifles should be ater below the 2% malfinetion rate. All rifles must pass the 2% criteria due to the small number of rounds being fired. 踑o major mêchanical failures are allowed in the test sample. Major mechanical failures are defined thote gialures that cannot easily be repaired with simple tools and/or readily available replacement part Alt the conclusion of this test the firearms will be carefully examined for signs of excessive wear, especiallywith respect to the plastic components.

Method:

- Check each rifle for the presence of the proof stamp(s) - do not shot unless the stamp(s) are present.
- Check each rifle for headspace
- Draw ammunition from stores - See test manager for ammo types to be used for this test.
- Perform all range preparations required for shooting in the long range. Make sure the range ventilation is turned on.
- Wear safety glasses with side shields and double hearing protection.
- When ready to fire, the tester should stand in the doorway of the long range and when firing should be careful to keep the bullets in the center of the range to prevent damage to shields, lights, etc.

 Research \& Development Technical Center
 315 West Ring Road

- Load the four rounds into the rifle, one in the chamber and three in the magazine, do not shoot single shot by hand-feeding single rounds into the chamber.
- Push the safe to the "fire" position,
- Fire the first round in the chamber, listen for any off-sounds, and be alert for any other unusual behavior.
- Open the bolt; eject the spent round, note any extraction or ejection problems.
- Close the bolt to load the first round from the magazine into the chamber, note any feeding or stemming problems.
- Continue to fire the remaining rounds in the magazine until the last round is fired.
- Push the Safety to "On Safe" position, the safety will be pushed to the fire position at the startof eveghe round trial and will be pushed to the On Safe position at the end of everffife roungtrialmthe effect of the action of the safety lever on the trigger assembly side-plate needs to G , determined.
- After firing ten rounds the rifle will be checked carefuly forthemesence of any live ammunition and if empty will be placed in the cooling rack. The safety will be in the "Onisafe" position and the bolt will be unlocked and fully open at all times. Compressed Gir may be used, if necessary to cool the inside of the chamber area if the rifle is excessively hotfrom fifng.
- All malfunctions will be retordect on tae datashets.

Data Required:

- Ride serial number
- Te
- Date ofteestíning

变解e TLWH

- The ammunition used for the test with the ammo code number of the rounds actually used.
- Any malfunctions noted or other unusual items of note.

TLW0683R - Extended Function \& Endurance:

This Extended Function \& Endurance Test will be shot to determine an estimate of the product's expected malfunction rate over an extended period of shooting. For purposes of definition, a component failure will be one that prevents (or could prevent) the firearm from functioning as intended. These are failures that can be fixed relatively easily by the simple replacement of a part such as could be done by the gun owner using only
J.R.Snedeker

Page 25 of 41
10/16/01
TLW 0683
Ramirem
Revision \# 1.0

Renaningtora prags Couapany tac.
 RESEARCH \& DEVELOPMENT TECHNICAL CENTER
 315 West Ring Road

simple household tools. System failures are defined as failures of a major nature, the extent of which would require specialized tooling or methods to repair not normally available to the average gun owner. Such a repair would be most likely made by a qualified gunsmith or by return to the factory.

This Extended Function \& Endurance Test will be shot in the Remington test jacks (heavy configuration). The covers on the "belly-protectors" will be down and in-place for each test shot. Careful monitoring of each test gun is essential to evaluate the malfunction rate for each firearm.

Each rifle will be shot no more than 20 rounds before being put aside for cooling. Compressed air applied to the inside of the chamber will be an acceptable method to assist in the cool-down process.

The test will be performed according to Remington's standard endurance test procedares for centegire rifle. Rounds for this test will be shot according to the attached schedule.

Records all instances of malfunctions and failures, and replace parts when they pocome unserviceable noting the round level when they were replaced.

After every 100 rounds one live round will be extracted and ejected from the chamber to check on live round ejection. The ejected round will then bere-insertedinto the chämber and fired to help keep the endurance round count accurate.

Method:

- Disassemble, tiforought chen, lubricate per the design team's instructions, and re-assemble. Record

Wityeach test grearm in accordance with the firing procedure (number of rounds, firing cycle) specified by engineming aind the test plan.
- Before commencing design acceptance testing, calibrate, adjust, or re-build the shooting jacks, if necessary.数 Allow the firearm to completely recover in the shooting jack between each shot and do not lean or "stiff arm" the firearm while shooting the gun.
- All ammunition is to be functioned through the magazine - no "single shot" hand feeding permitted.
- Allow the rifle to cool between cycles. One cycle is 20 rounds fired. The use of forced air to accelerate cooling of the barrels between firing trials is permitted. The air should be directed from the chamber toward the muzzle to prevent it from washing the lubricant from the firearm's action.
- Cycle the safety from fire to safe every 4 rounds, from Safe to Fire at the start of the five round cycle and from Fire to Safe at the end of the 4 round cycle.
- After 500 rounds, disassemble, inspect, clean and lubricate the entire mechanism and take all required measurements.
- The Standard Remington Jacks (using the heavy configuration) are to be used for this test.

Data Required:

- Rifle serial number
- Tester's name
- The Test Jack Identification
- TLW\#
- Date of actual testing
- Headspace after the 500 round interval.
- Malfunctions per ammo type, breakage, and replacement partsused
- Any failure that requires the gun to be removed fromtering completely;
- Notify management of any unusual events ortitalfunctionsimmediately.
- Any firing of the firearm without the rigger being pulled.
- Record ammunition lot code information as it is usitd thionughout the test.

$\underbrace{4+2}$		$\begin{gathered} \text { FuCtion } \\ \text { gest } \\ \text { roo Rd. } \end{gathered}$	SHOULDER FIRED TEST 20 Rd.	$\begin{gathered} \hline \text { ENDURANCE } \\ \text { TEST } \\ 120-500 \mathrm{Rd} . \end{gathered}$	$\begin{aligned} & \hline \text { ENDURANCE } \\ & \text { TEST } \\ & \text { 500-1000 Rd. } \end{aligned}$	$\begin{gathered} \hline \text { ENDURANCE } \\ \text { TEST } \\ 1000-4000 \text { Rd. } \end{gathered}$	TOTAL ROUNDS
	A1	X	X	X	X	X	4000
	A2	X	X	X	X		1000
	A3	X	X	X			500
	A4	X	X	X			500
	A5	X	X	X			500
	A6	X	X	X			500
	A7	X	X	X			500
	A8	X	X	X			500
	A9	X	X	X			500

J.R.Snedeker

Page 27 of 41

TLW 0683

10/16/01

TESTEOUND SCHEDULE
(DOESNOTT COUNT ROUNDS FOR ACCURACY OR OTHER TESTING)

Renaington Apras Cong pany Tac. Research \& Development Technical Center 315 WEST RING ROAD

A10	X	X	X			500
A11	X	X				120
A12	X	X				120
$\mathbf{A 1 3}$	X	X				120
A14	X	X				120
A15	X	X				120
	$\mathbf{1 5 0 0}$	$\mathbf{3 0 0}$	$\mathbf{3 8 0 0}$	$\mathbf{1 0 0 0}$	$\mathbf{3 0 0 0}$	$\mathbf{9 6 0 0}$

TLW0683S - Clean Rifles and Inspect:

After each 1000 rounds of endurance, unless other wise spiecifiécheach rifle will be disassembled, cleaned and thoroughly inspected.

A list of inspection pointspifill beprovided in the guth packet for check-off and sign-off by the inspector. The inspector will be looking for apy signs of wasual wear, especially on critical components and surfaces as well as for anything siteh as ractus or deformed material that might present a safety concern. Photographs will be takento doculanentusutaly year, damage or other notable characteristics.

ACCURACY TESTING:

ACCURACY TESTING-:

TLW0683T - Group Size at 100 yards :

One hundred-yard accuracy testing will be completed utilizing stañardfactoryampinition. The test will consist of five, 5 -shot groups. Guns will be cooled after evely othergroup. Each fruarin will be cleaned
 actual targets and recorded. The same code of ammuntion and sande type of ammunition will be used for all group size test shots. Average group sizes thust be Ifss than or efual to the sizes per the attached schedule (as shown by the Gallery Specs.)

Method:

- Certify the ammunition selected for muzzle velocity and pressure.
- Fire five, 5 -shot groups at 100 yards, using a 36 power scope for each ammunition type selected. Prior to beginning of the test, clean the bore and shoot 5 "fouling" shots to seat in the rifle.
- Cycle the safety from fire to safe every 5 rounds.
- Accuracy should be shot from a recoiling rest. Shoulder shooting is acceptable but not the preferred way.

Renuington Arms counpany Tra.
 Research \& Development Technical Center 315 West ring road

Data Required:

- Measure group sizes center to center
- Record takedown screw torque
- Record make and identifier of scope
- Record ammunition type used.
- Record ammunition lot numbers used during the test
- Record and label any fail-to-fire ammunition.
- Record any malfunctions that occur during the test.

ENVIRONMENTAL TESTING:

This test eqaluates the effect of extreme high temperatures on the functioning performance of firearms.
Method

- Condition test firearm and 100 rounds of ammunition of each caliber in a climatic chamber for at least 6

- Test each firearm within the chamber as follows:
- Fire 20 rounds of ammunition. Wait 2 hours and repeat until all 100 rounds have been fired.
- Do not perform maintenance during the 100 round cycle.
- Cycle the safety from fire to safe every 5 rounds.
- The tester should wear gloves to protect his hands from the hot metal.
- After 100 rounds have been fired through each firearm, remove the firearms from the conditioning chamber, disassemble, thoroughly inspect, clean and lubricate.

Data Required:

- Record temperature and exposure times
J.R.Snedeker

10/16/01
TLW 0683

Revision \# 1.0

Renington Armas Conpany tac.
 Research \& Development Technical Center 315 West Ring Road

- Record all malfunctions.
- Record damage noted during inspection
- Record all necessary maintenance actions performed

TLW0683V - Cold Function Test:

This test evaluates the effect of extreme low temperatures on the functioning performance of the firearms. Shoot the firearm from inside the environmental test cabinet in the long range.

Method:

- Condition the firearm and 100 rounds of ammunition of climatic chatber forgat least 6 tour a a temperature of -20 degrees F.
- Test each firearm within the chamber as follows:
- Fire 20 rounds of ammunition. Wait 2 hours and repeat untilall igo rounds have been fired.
- Do not perform maintenance during the 100 round cycle.
- Cycle the safety from fire to safe every 5 rounds.
- After 100 rounds have heenfiredifithoug thefrearm, remove the firearm from the conditioning chamber, disassemble thonoughly mspeet, clean and lubricate.
Data Reguired:
- Recofd temperare tand exposure times
- Record ब1 malfunctions.

We Fivord damage noted during inspection

- Record all necessary maintenance actions performed

TLW0683AF - Thermal Cycle Test:

This test evaluates the effects of large temperature changes due to expansion and contraction differentials of metallic and non-metallic components used in the Model 710. The sample rifle will be alternately cycled between a temperature of $120^{\circ} \mathrm{F}$. and $-40^{\circ} \mathrm{F}$. for at least 3 complete cycles, brought back to

Remaingtora Arugs Cougpony Tac.
 Research \& Development Technical Center 315 West Ring Road

ambient temperature and test fired in the test jacks for 200 rounds to evaluate both function and safety related characteristics.

Method:

- Shoot sample rifle in test jack to determine rifles malfunction characteristics and rate.
- Do not clean rifle
- Place rifle in freezer that is pre-set to $-40^{\circ} \mathrm{F}$ and leave undisturbed for at least 24 hours.
- At completion of $24+$ hours, remove rifle and immediately place in the pre-heated test chamber at a temperature as close to the $+120^{\circ} \mathrm{F}$ as can be attained by the equipment. Leave rifle undisturbed for at least 24 hours.
- At completion of at least 24 hours, remove rifle and immediately place in, tiefreezer:
- Repeat this cycle for a minimum of three complete hot and three complete colof cycles.
- At the completion of the final cycle (the heat cycle) remove the fle from the chamber and allow cooling to ambient temperature - a minimum of six hours man_{5},
- Return the rifle to the test jack used at thestart of the test and fire another 100 rounds recording malfunction types and rates.
- Remove the action from thestoge and exantme the rifle for any obvious signs that the thermal cycling has affected the pathewith specthal attention directed at the metallic and non-metallic interfaces. Look for cracked partsand for siguspof material creep.

Daturequired:

- Rigle serialntimber

- Temperature records throughout each cycle. Use the chart feature on the freezer and a temperaturerecording device for the chamber.
- Malfunctions type and rates both pre- and post thermal cycles.
- Observations made on cracks, creep or other noteworthy items.

ABUSIVE TESTING

IMPACT TESTING-:

TLW0683W - SAAMI Drop Test :

This test will simulate abusive dropping of the firearm from a distance of 48 inches onto a 1^{6} thick 85 durometer (Shore A) rubber mat backed by concrete. Trigger Pull weight will be adjusted to thinimum specification (4 lb.) The Trigger/Sear engagement will be set to the minimum specification (0.020, . Tast wid be performed according to SAAMI Technical Committee procedures, Magene capacity will as well be according to SAAMI procedures. After each series of test, the primed case will bedischarged to insure validity of test. This test will be performed on a sample of four firearms.
Method:

- With the firearm safety in the SAFEstate the firearm; shall beitapable of passing the below test criteria for drop testing from a heightoffour feetinnton $85+5$ Dứometer, Shore A, rubber mat, one-inch thick backed by concrete. The mat and 靬nerete shaty betarge enough so that when the gun is dropped it will fall and come to *est withouthntefferemge within the perimeter of the mat. The four feet shall be measured from the surface of the mbiber matio the center of gravity of the firearm. The center of gravity shall be determined to an acturacy of \pm one inch by any recognized method for finding the center of gravity of an irregular shaped obfect. The primed case shall be discharged following the drop and a fresh primed cartridge re-chambered

- The firearm or firearms shall be dropped in such a way as to strike the rubber mat surface once in each of the following attitudes:
- Barrel vertical, muzzle down.
- Barrel vertical, muzzle up.
- Barrel horizontal, bottom up.
- Barrel horizontal, bottom down.
- Barrel horizontal, left side up.
- Barrel horizontal, right side up.

 Research \& Development Technical Center 315 West Ring Road

- Tests shall be conducted with the trigger pull force set at the minimum force specified, with engagement set to the minimum specified, and with the firecontrol lubricated as in the owner's manual.
- The test shall be conducted with the magazine or clip fully loaded with dummy cartridges and inserted in the firearm.
- Parts breakage or other damage as a result of drop testing does not constitute failure as long as the empty primed case does not fire and the firearm can be unloaded safely after each drop. More stocks are required than the amount of test guns to allow for breakage due to the drop testing. If a stock cracks - replace before continuing test.

Data required:

- Record whether or not the firearm fires an empty primed case of its defreated chrtridge whenested in accordance with this procedure.
- Record round level

TLW0683X - SAAMI Jar-Off Thest:

The objectiteof the yar-off test is to simulate the abusive impacting (bumping) of the firearm against a hard sufface with the fireaty in condition of maximum readiness. With the firearm in the ready to fire conkition, the firegrm shall be capable of withstanding a jar-off shock equivalent to being dropped from a height of 12 " incties onto a 1" thick 85 Durometer (Shore A) rubber mat backed by concrete. Trigger Pull weight will be adfinsted to minimum specification. The Sear engagement will be set to min.. The test will be performed + according to SAAMI Technical Committee procedures. Magazine will be loaded to maximum capacity with dummy rounds according to SAAMI procedures. A fresh primed case will be chambered prior to each drop. After each drop the primed case will be discharged to verify its validity. This test will be performed on a sample of four firearms.

Method:

- With the firearm cocked and the safety in the FIRE position the firearm shall be capable of withstanding jaroff shock equivalent to being dropped from a height of twelve inches onto a 85 ± 5 Durometer, Shore A, rubber mat, one-inch thick backed by concrete. The mat and concrete shall be large enough so that when the gun is dropped it will fall within the perimeter of the mat striking the mat once. The twelve inches will
J.R.Snedeker
Page 34 of 41
10/16/01
TLW 0683
スemimgon Comornez
Revision \# 1.0

Rewningtora Arans Cougiowny Inc.
Research \& Development technical Center 315 WEST RING ROAD

be measured from the test surface to the lowest point on the firearm. As an alternate to free dropping, other methods may be substituted if they provide equivalent impact characteristics. The primed case shall be discharged following the drop and a fresh primed cartridge re-chambered prior to the next drop. A "fresh" firearm may be substituted into the test at any point.

- The firearm or firearms shall be dropped in such a way as to strike the rubber mat surface once in each of the following attitudes:
- Barrel vertical, muzzle down.
- Barrel vertical, muzzle up.
- Barrel horizontal, bottom up
- Barrel horizontal, bottom down.
- Barrel horizontal, left side up.
- Barrel horizontal, right side up.
- Tests shall be conducted with the trigger pull force set at theminimum force specified, with engagement set to the minimum specified, and with the Giecontrolubricated per the owner's manual.
- The test shall be conducted wifithe thagazine or clip fullothoaded with dummy cartridges and inserted in the firearm.
- Parts breakage getherdamage as a result of drop testing does not constitute failure as long as the empty prinitd case toeswot freegnd the firearm can be unloaded safely after each drop. More stocks are required than the amough of test guns to allow for breakage due to the drop testing. If a stock cracks - replace before continting test.

Date equired:

- Record engagement and trigger pull.
- Record whether or not the firearm fires an empty primed case of its designated cartridge when tested in accordance with this procedure.
- Record the round level on the firearm.

TLW0683Y - SAAMI Rotation:

The test will be conducted according to SAAMI Technical Committee procedures. The firearm will be placed in the "Safe Carrying" condition and dropped from an upright position with its butt resting on the surface

| J.R.Snedeker | Page 35 of 41 | 10/16/01 | |
| :--- | :--- | :--- | :--- | :--- |
| TLW 0683 | Revision \# 1.0 | | |

Remington Axans Conapany Tac.
 Research \& Development Technical. Center 315 WEST RING ROAD

of a 1 " thick 85 durometer (Shore A) rubber mat backed by concrete. Trigger Pull weight will be adjusted to minimum specification. Sear engagement will be set to minimum. Magazine capacity will as well be according to SAAMI procedures. The firearm shall be tested (dropped) on both the right and left sides. After each rotation, the primed case will be discharged to insure validity of test.

Method:

- With the firearm safety in the SAFE state, the firearm shall be capable of passing the below test criteria when allowed to fall freely from an upright position with its butt resting on the surface 0 a a 85 ± 5 Durometer, Shore A, rubber mat, one-inch thick backed by concrete. The mat and concrete shall tealarge, enough so that when the gun falls it will come to a rest without interference within the pexmeter of the mat.
 case shall be discharged following the drop and a fresh pringed cartridge re-chambered prior to the next drop. A "fresh" firearm may be substituted inte the test at ainy point.
- Tests shall be conducted with the triggetpull force set at the minimum force specified, with engagement set to the minimum specified, andwith the firecontrol lubricuated per the owner's manual.
- The test shall be conductedaty whe magher clip fully loaded with dummy cartridges, inserted in the firearm,
- Partsibreakage orotherdamage as a result of drop testing does not constitute failure as long as the empty P printed case des not fire and the firearm can be unloaded safely after each drop. More stocks are required than theamotint of test guns to allow for breakage due to the drop testing. If a stock cracks - replace before fontinuing test.

Data required:

- Record whether or not the firearm fires an empty primed case of its designated cartridge when tested in accordance with this procedure.
- Record round level on the firearm

TLW0683Z- Extended SAAMI Jar-Off Test: (for Information only):

Rengingtion Apuas Cougpany The.
 RESEARCH \& DEVELOPMENT TECHNICAL CENTER

With the intent to establish design margin this test simulates the abusive impacting (bumping) of the firearm against a hard surface with the firearm in a state of maximum readiness under conditions more severe than the SAAMI recommendations. This test will be performed on a sample of six (Phase II) (or the number available after performing the std. SAAMI tests) firearms.
Method:

- With the firearm cocked and in the safety in the FIRE position the firearm shall be dropped from a height of 18 inches, 24 inches, and 48 inches onto a 85 ± 5 Durometer, Shore A, rubber mat, one-inch thick backed by concrete. The mat and concrete shall be large enough so that when thegun is dippped it will fall within the perimeter of the mat striking the mat once. The distance of drop will.be magabed, from the test surface to the lowest point on the firearm. The primed ceseshall bediselarged following the drop and a fresh primed cartridge re-chambered prior to the next drow A "㱞sh firearm may be substituted into the test at any point.
 each of the following attitudes:
- Barrel vertical, muszét down.
- Barrel vertical, nuzzemp.
- Barrefherizontal, bottom up
- Barrel Borizontal, bôttom down.
- Bayel horizontal, left side up.

Barrel horizontal, right side up.
Tests shall be conducted with the trigger pull force set at the minimum force specified, with engagement set to the minimum specified, and with the firecontrol well lubricated with Rem-Oil.

- The test shall be conducted with the magazine or clip fully loaded with dummy cartridges and inserted in the firearm.
- Conduct this test at 18 inches, 24 inches, and 48 inches.
- Parts breakage or other damage as a result of drop testing does not constitute failure as long as the empty primed case does not fire and the firearm can be unloaded safely after each drop. More stocks are required than the amount of test guns to allow for breakage due to the drop testing. If a stock cracks replace before continuing test.

Data required:

 Research \& Development Technical Centerr
 315 West Ring Road

- Record engagement and trigger pull
- Record whether or not the firearm fires an empty primed case of its designated cartridge when tested in accordance with this procedure.
- Record the round level on the firearm

TLW0683AA - Extended SAAMI Rotation Test: (for Information only):

With the intent to establish design margin this test simulates the abisive fally a crearmowhteft leaning against a vertical surface under conditions more severe than the SAAMI reommetgations.
Method:

- With the firearm safety in the SAFE state, the firearm shaily be capable of passing the following test criteria when allowed to fall freely fiem an upightposition with its butt resting on the surface of a tiled floor backed by concrete the firearm shall be thed its left-hand side. The pimedicase shalpeatischarged following the drop and a fresh primed cartridge re-chambered prior to the thext drop. "A "fresh" firearm may be substituted into the test at any point.
- Teests shate bésonducted wilh the trigger pull force set at the minimum force specified, with engagement set to the hinimum specified, and with the firecontrol well lubricated with Rem-Oil.
- Thettest shall be conducted with the magazine or clip fully loaded with dummy cartridges, inserted in the firearm.
- Parts breakage or other damage as a result of drop testing does not constitute failure as long as the empty primed case does not fire and the firearm can be unloaded safely after each drop. More stocks are required than the amount of test guns to allow for breakage due to the drop testing. If a stock cracks replace before continuing test.

Data required:

- Record whether or not the firearm fires an empty primed case of its designated cartridge when tested in accordance with this procedure.
- Record round level of the firearm.

Rucuaington Aruas Conapany Inc.
 Research \& Development Technical Center 315 West Ring Road

TLW0683AB - Extended SAAMI Drop Test: (for Information only):

With the intent to establish design margin this test simulates abusive dropping of the firearm in conditions more severe than the SAAMI recommendations.

Method:

- With the firearm safety in the SAFE state, the firearm shall be dropped from a height of 6 feetand 8 feet onto a 85 ± 5 Durometer, Shore A, rubber mat, one-inch thick backed by concrete. The mat and concsete. shall be large enough so that when the gun is dropped it will fall andgeme to st witholt merfentice within the perimeter of the mat. The drop height shall be measureffrom the surfaegofthe rubber mat to the center of gravity of the firearm. The center of gravity fisp be determined to an accuracy of \pm one inch by any recognized method for finding the center of gravity of aty iregular shaped object.
- The primed case shall be dischargedfollowing thedrop and a fresh primed cartridge re-chambered prior to the next drop. A "fresho fifearin may be subsfituted mo the test at any point.
- Test Procedure - The facearmor firearivesphall be dropped in such a way as to strike the rubber mat surface once in each of the following attitudes:

- Barrel horizontal, bottom up.
- Barrel horizontal, bettom down.
- Barrel horizontal, left side up.
- Barrel horizontal, right side up.
- Tests shall be conducted with the trigger pull force set at the minimum force specified, with engagement set to the minimum specified, and with the firecontrol well lubricated with Rem-Oil.
- The test shall be conducted with the magazine or clip fully loaded with dummy cartridges and inserted in the firearm.
- Parts breakage or other damage as a result of drop testing does not constitute failure as long as the empty primed case does not fire and the firearm can be unloaded safely after each drop. More stocks are

Remaington Arnas Conapany Tac.
 Research \& Development Technical Center 315 West Ring Road

required than the amount of test guns to allow for breakage due to the drop testing. If a stock cracks replace before continuing test.

Data required:

- Record whether or not the firearm fires an empty primed case of its designated cartridge when tested in accordance with this procedure.
- Record round level on the firearm.

INTENTIONAL ABUSE :

Note that for the following tests, the rounds are to be loaded remotedy alld the test setup shall have the capability of unloading live rounds remotely if required.

TLW0683AC - Obstructed Bore Test:

One of the sample ifflestifl have arifle bullet driven into the bore to a position immediately ahead of the chambertat standard round (300 Win. Mag. or the 7 mm Rem. Mag. factory load) will be loaded and fired remotely All testing will be done in the blow-up room using the high-speed video camera and witness paper. Before thoving for otherwise disturbing the test samples after blow-up photographs will be taken for the record After collection and removal of the parts additional photographs of the various individual components * wite taken for the record. All parts and will put in sample bags, boxed and temporarily stored for review if required.

TLW0683AG - High Pressure Test:

The rifle will be tested to $120,000 \mathrm{psi}$. The purpose of this test is to determine the extent of damage if an individual does purposely or accidentally handload an extremely high pressure load. Use standard Remington high-pressure ammunition safety procedures for these tests. The pressures for the test round will be worked up using various grain size loads giving pressures below $95,000 \mathrm{psi}$, (approaching the limits of the transducer

Rewaingtoa Anrags cougipany Tac.
 RESEARCH 8 DEVELOPMENT TECHNICAL CENTER
 315 West Ring Road

gauges.) The grain size load will be plotted and a curve extrapolated to determine the load expected to produce a load of approximately $120,000-\mathrm{psi}$.

All testing will be done in the blow-up room using the high-speed video camera and witness paper.
Before removing or otherwise disturbing the test samples after blow-up, photographs will be taken for the record. After collection and removal of the parts additional photographs of the various individual components will be taken for the record. All parts and will put in sample bags, boxed and temporarily stored for review if required.

