ſ

Date Submitted: 09-17-01	Tracking # : TLW 0681
Project # : 241314	Engineer: M. Keeney
Test Objective: Verify performan	ce of modified Model 710 ISS Lock Plungers.
Test Description: Subject firing pi	n assemblies to DAT test protocol as deemed
necessary to qualify changes to the	-
Resource Usage:	Test Results Required:
Manpower Requirements – 🦿	Formal Report: X Data Only:
Facility Requirements -	Requested Completion Date: 10-01-01
Required Materials/Parts/Equipm	nent (include quantities): 10 Bolt Assemblies
supplied.	
Test Parts Availability Date: 9-17	<u></u>
	est Assigned To: B. Rages
Completion Dates in the	ssignment Date: ?

ET30968

· .

~~

Model 710 ISS Dry Cycle

Brian Rages

11/12/01

PURPOSE

The purpose of this test was to evaluate the characteristics of ISS systems with a chamfered plunger before and after dry-cycling.

CONCLUSIONS

Eleven ISS units were considered. Ten were ISS units with a new chanfered plunger design and one had the original non-chamfered design.

All ISS units passed a four-point function test before testing. All the dry-cycled units passed the function check after dry-cycling.

The torque required to lock and unlock each ISS unit was measured before and after 5,000 cycles of testing. Dry-cycling generally caused a drop in torque. The chamfered ISS units required higher torques to lock and unlock than the non-chamfered ISS unit, before and after dry cycling.

One of the chamfered-plunger ISS units was cycled an additional 5,000 cycles. After 10,000 cycles, the peak lock torque had risen 5%. The peak unlock torque had dropped an additional 10%

Each of the 5,000-cycle ISS units was disassembled, as well as the 10,000-cycle ISS unit. Wear was visible on the parts inside, but the parts did not appear worn out.

PROCEDURE

뽜 툦븮븮숺슻깇슻

> Eleven bolts were tested. Ten of these had the newer chamfered-plunger ISS design and one had the older non-chamfered plunger. Out of the ten chamfered-plunger bolts, one was randomly selected to be the 10,000-cycle bolt and was labeled Bolt 1. Four of the other chamfered bolts were randomly selected for 5,000-cycle testing and were labeled Bolts 2-4. The other five chamfered bolts were labeled Bolt 6-10. The non-chamfered bolt was labeled Bolt 11.

> Before testing, each bolt was put through a four-point testing procedure outlined in Test Lab Work Request TLW 0681. The procedure is summarized as follows:

> > 1/11

REMINGTON CONFIDENTIAL

ET30969

Confidential - States - 5.22 06007237 e Order Williams v. Remington

÷iese si

- <u>ISS Lock Effectiveness</u> The ISS was locked and an attempt was made to close the bolt on a primed case without using excessive force. If the bolt closed the trigger was to be pulled with the safety off. If the primer remained unfired, the ISS was to be unlocked. Primer ignition during the test resulted in failure.
- 2. <u>ISS Lock Intrusiveness</u> The ISS, when unlocked, must not prevent a primed case from being fired when the safety is off and the trigger pulled.
- 3. <u>ISS Lock Security</u> An attempt was made to unlock the ISS from its locked position without using the proper key. A thin flathead screwdriver was used. The test was passed if the ISS could not be unlocked.
- 4. <u>ISS Bolt Closed Behavior</u> An attempt was made to turn the ISS to the locked position with the bolt closed. The ISS failed if it could be turned completely to its locked position.

The torque required to lock and unlock the ISS was measured. To measure the lock and unlock torque, an ISS key was fitted with an arm made from a flat piece of spring steel. A strain gage was placed on the arm next to the key. This device may be seen in Figure 1.

To measure the torque, the bolt containing the ISS unit to be measured was clamped in a vise. The torque-measuring key was placed in the ISS and the key was rotated slowly to turn the ISS to the locked position. The force to turn the key was applied by hand to the end of the metal arm. This force caused the arm to flex. The flexing of the arm was measured by the strain gage, then recorded and converted to torque. After the ISS had been locked, the key was turned the apposite direction to unlock it. The locking and unlocking of the ISS were performed within a 20-second sampling period. This torque measurement was taken five times for each of the ISS units.

Figure 1. ISS torque measuring device.

2/11

REMINGTON CONFIDENTIAL

ET30970

Confidential - Shipert 522.067007238 Order Williams v. Remington The strain gage, a 120-ohm unit, was run into a Measurements Group Model 2311 Signal Conditioning Amplifier. The strain gage amplifier was set to a 3.5 V excitation with a wideband filter. The gain was adjusted to 575 to give a 1mV/microstrain calibration.

A Techtronix oscilloscope was used to collect the data for download into a laptop PC. The strain gage reading was multiplied by 0.7705 to convert microstrain to inch-pounds of torque.

No lubrication was added to any of the ISS cylinders, and no cleaning was performed on them. Each ISS in Bolt 1 through 5 and Bolt 11 was cycled through its 180° travel 5,000 times using a pneumatic rotary indexer. Figure 2 shows the dry-cycle fixture used. The torque on Bolt 1 was then measured and 5,000 additional cycles were placed on it.

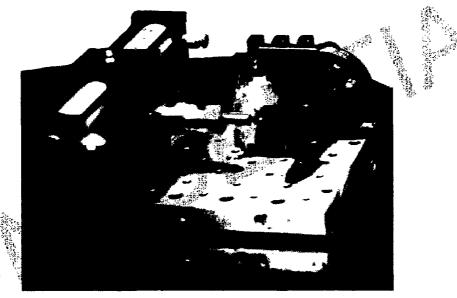


Figure 2. ISS dry cycle fixture.

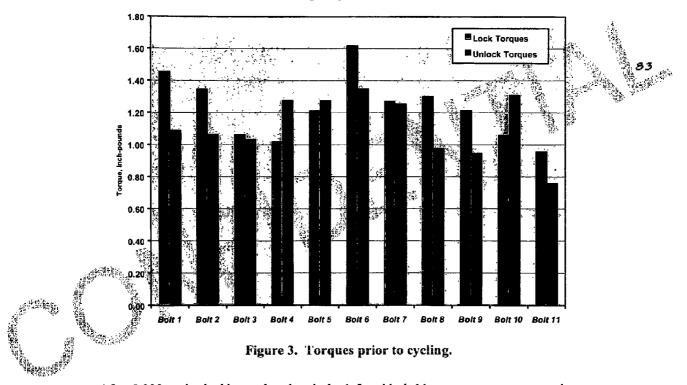
After dry-cycling, the torque required to lock and unlock the ISS unit in each cycled bolt was again measured. Each cycled bolt was tested according to the four-point function test described above.

RESULTS

None of the bolts failed the function test as listed in the "procedure" section of this test before or after cycling. In each case, the bolt could not be closed with the ISS locked using a reasonable amount of force.

The torque required to lock and unlock the ISS was measured using a strain gage mounted on a flexible steel arm turning an ISS key. The strain gage reading was multiplied by 0.7705 to convert it to torque in inch-pounds. The conversion method for

3/11

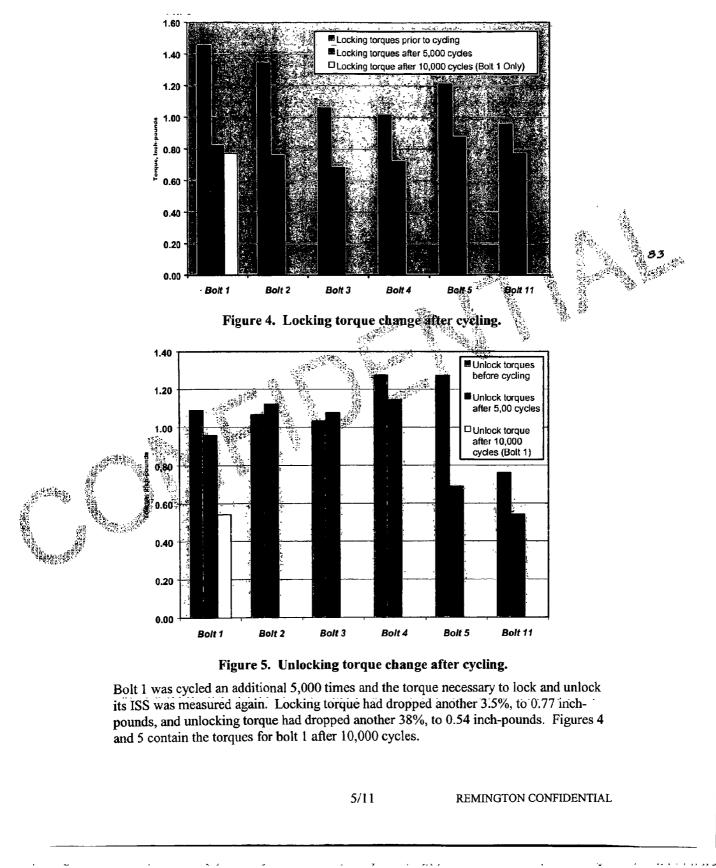

REMINGTON CONFIDENTIAL

ET30971

Confidential - Subject 5.22.060007239 Order Williams v. Remington converting strain gage reading to torque was given in an earlier report on ISS system drycycling: Model 710 ISS Dry Cycle, Brian Rages, 10/24/00.

The peak locking torques of the ISS units prior to any cycling ranged from 1.62 to 0.96 inch-pounds. The ISS unit with the nonchamfered plunger took the least torque to lock, by 0.06 pounds.

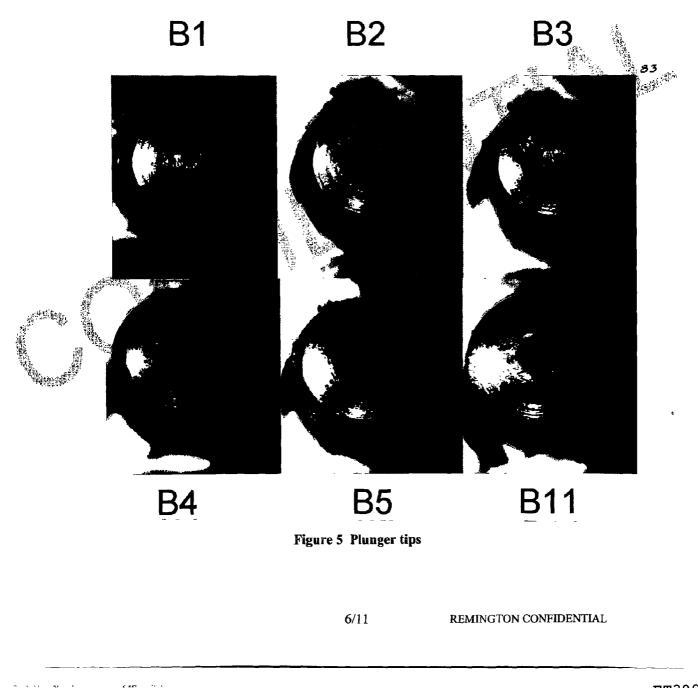
Unlocking torques for the ISS units prior to cycling varied from 0.76 to 1.35 inchpounds, with the lightest torque required for the ISS with the nonchamfered plunger. Figure 3 contains locking and unlocking torques prior to cycling. Bolt 6 may be seen to have the highest locking and unlocking torques.


After 5,000 cycles had been placed on bolts 1-5 and bolt 11, torques were measured again. Average locking torques on the chamfered ISS units dropped 63%, from 1.26 to 0.77 inch-pounds. Average unlocking torques on the non-chamfered units dropped 16%, from 1.16 inch-pounds to 1.00, although the unlocking torques on Bolt 2 and Bolt 3 were higher after 5,000 cycles than before the test. On Bolt 11, the bolt with the chamfered plunger, locking torque dropped 20%, from 0.96 to 0.77, and unlocking torque dropped 29%, from 0.76 to 0.54 inch pounds. Figure 4 illustrates the change in locking torque after dry-cycling, while Figure 5 shows the change in unlocking torque.

4/11

REMINGTON CONFIDENTIAL

ET30972


Confidential - States - 5.22:06007240 Order Williams v. Remington

ET30973

Confidential - States 5.22.06007247 Order Williams v. Remington After the ISS systems had been cycled, the 4-point function test was repeated on the cycled bolts. All bolts passed just as they had done prior to being cycled – when engaged, the ISS device would not allow closure of the bolt.

On bolts 1 through 5 and Bolt 11, the bolt plugs were cut open, and the components of the ISS were removed for inspection. Figure 5 contains a picture of the plunger tips. None of the plungers show an extreme amount of wear. Plungers from Bolt 1 and Bolt 3 show slight wear on the tip. Some wear areas can also be seen on the tip of the plunger from Bolt 11.

Confidential - Subject to Protective Order Williams v. Remington The ISS cylinders were removed from the guns and examined. All showed fairly similar amounts of wear. Figures 6 and 7 show the plungers from Bolts 1 through 5. All have a slight band of wear across the top where the plunger rubs against the cylinder. A wear spot may be seen in Figure 7 where the plunger tip contacts its cavity.

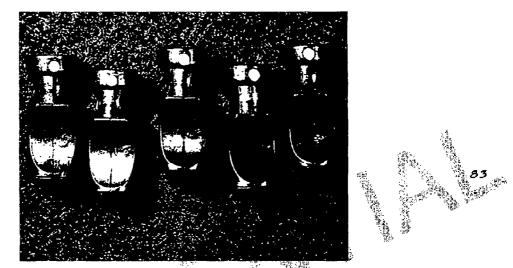
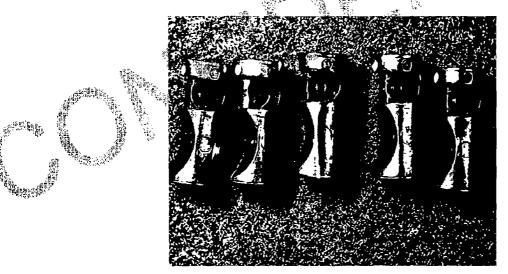
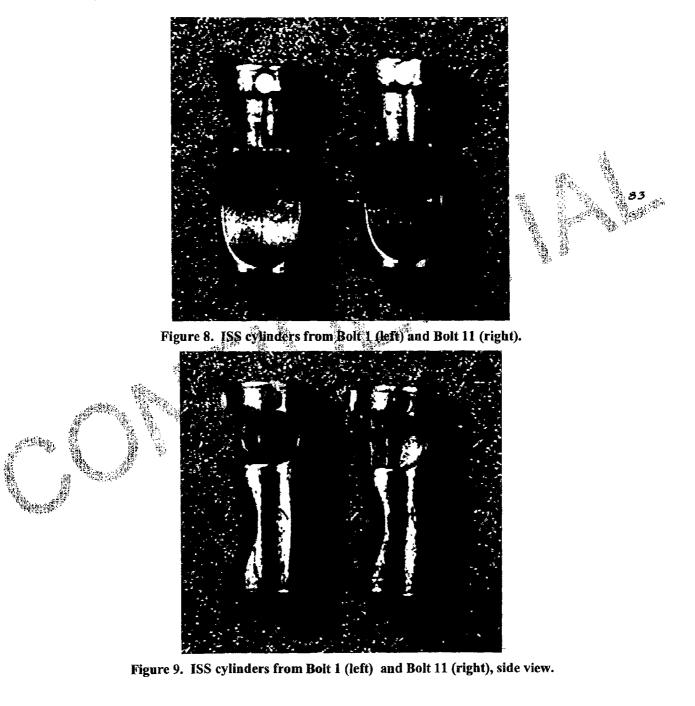


Figure 6. ISS cylinders from Bolts 1 through 5 (left to right)




Figure 7. ISS cylinders from Bolts 1 through 5, side view (left to right)

7/11

REMINGTON CONFIDENTIAL

ET30975

Confidential - Strington - 5.22.0670007243 Williams v. Remington Figure 8 and 9 contain images of the ISS cylinder from Bolt 11. It is pictured with the ISS cylinder from Bolt 1 for comparison. A similar amount of wear is visible on each cylinder.

8/11

REMINGTON CONFIDENTIAL

DATA

.

Bolt Torques

rorques			
Avg. cham lock:	1.26		
Avg. cham unlock:	1.16		
Avg. cham unlock after 5,000	0.77	%	62.4 9
cycles:		drop:	
Avg. cham lock after 5,000 cycles:	1.00	%	16.01
		drop:	

				Mea	sureme	ent#				
		1	2	3	4	5	Ave	Std. Dev	% Drop	% Drop
Bolt 1	Lock torque before test	1.714	1.769	1.301	1.2 73	1.224	1.46	0.263	total	of prev.
	Unlock torque before test	1.134	1.196	1.03 6	1.091	0.992	1.09	0.080		1.400 E
	Lock torque after 5000 cycles	0.906	0.860	0.811	0.777	0.758		0.061	43:52	
	Unlock torque after 5000 cycles	0.900	0.912	1.011	0.992	0,977	0.96	0.050	12.05	
	Lock torque after 10000 cycles	0.894			0,730	0.715	0.77	0.074	47.08	3.556
	Unlock torque after 10000 cycles	0.530	0.552	0.552	0.546	0.539	0.54	0.009	50.11	38.066
<u> </u>	cycles		28 Q3 28 Q3 28 Q3		<u>h}</u>		<u> </u>	I	L	I
			,;	Mea	sureme	ent #				

	<u></u>				Mea	sureme	nt#				
	Bolt 2		1	2	3	4	5	Ave	Std. Dev	% 0	rop
		Lock torque before test	1.606	1.381	1.519	1.171	1.057	1.35	0.231		
		Unlock torque before test	1.066	1.110	0.974	1.060	1.125	1.07	0.059		
	B C C Art	Lock torque after 5000 cycles	0.912	0.777	0.697	0.740	0.678	0.76	0.093	43.52	
````` ````````````````````````````````		Unlock torque after 5000 cycles	1.288	1.033	1.054	1.131	1.103	1.12	0.101	-5.14	

				Меа	sureme	ent#				
		1	2	3	4	5	Ave	Std. Dev	% Drop	
Bolt 3	Lock torque before test	1.224	1.057	1.042	1.005	0.986	1.06	0.094		
	Unlock torque before test	1.082	0.996	1.063	0.999	1.033	1.03	0.038		
	Lock torque after 5000 cycles	0.650	0.675	0.641	0.653	0.804	0.68	0.068	35.56	
	Unlock torque after 5000 cycles	1.162	1.184	1.020	1.100	<b>0.9</b> 18	1.08	0.109	-4.11	

9/11

2

,

. . .

. .

. . .

μ,

**REMINGTON CONFIDENTIAL** 

h

.

			~		Mea	sureme	ent #			
			. 1	2	3	4	5	Ave	Std. Dev	% Drop
	Bolt 4	Lock torque before test	1.094	1.033	1.002	0.980	0.983	1.02	0.047	
		Unlock torque before test	1.264	1.338	1.328	1.174	1.282	1.28	0.065	
		Lock torque after 5000 cycles	0.746	0.740	0.71 <b>8</b>	0.684	0.718	0.72	0.024	29.18
L		Unlock torque after 5000 cycles	1.236	1.211	1.165	1.113	1.005	1.15	0.092	10.28
Г				_	Mea	sureme	ent#			
			1	2	3	4	5	Ave	Std. Dev	% Drop
	Bolt 5	Lock torque before test	1.372	1.177	1.20 <b>8</b>	1.190	1.116	1.21	0.095	
		Unlock torque before test	1.396	1.301	1. <b>359</b>	1.214	₂1. <b>106</b>	1.28	0117	
		Lock torque after 5000 cycles	1.029	0.866	0,857	28. 1 × 1 1.	0.829	0,88	0.089	27.71
		Unlock torque after 5000 cycles	0.684	0.712	0.703		0.866	0.69	0.018	45.82
			43)-			sureme				
			्र ्रि	2	<b>Mea</b> 3	sureme 4	ent # 5	Ave	Std.	Dev
	Bolt 6	Cock terque	1.973	1.871	1.516	1.470	1.261	1.62	0.296	
		Unlock torque before test	1.368	1.365	1.405	1.304	1.310	1.35	0.043	
				_				_		
			1	2	mea 3	sureme 4	ent# 5	Ave	Std	Dev
	Bolt 7	Lock torque before test	1.822	1.301	1.113	r	1.051	1.27	0.322	
		Unlock torque before test	1.097	1.230	1.390	1.298	1.261	1.26	0.107	
			1	2	Mea 3	sureme 4	ent # 5	Ave	Std.	Dev
		Lock torque			-		· · ·	1.30	0.248	
	Bolt 8	before test	1.695	1.387	1.205	1.116	1.103	1.50	0.240	

~

10/11

REMINGTON CONFIDENTIAL

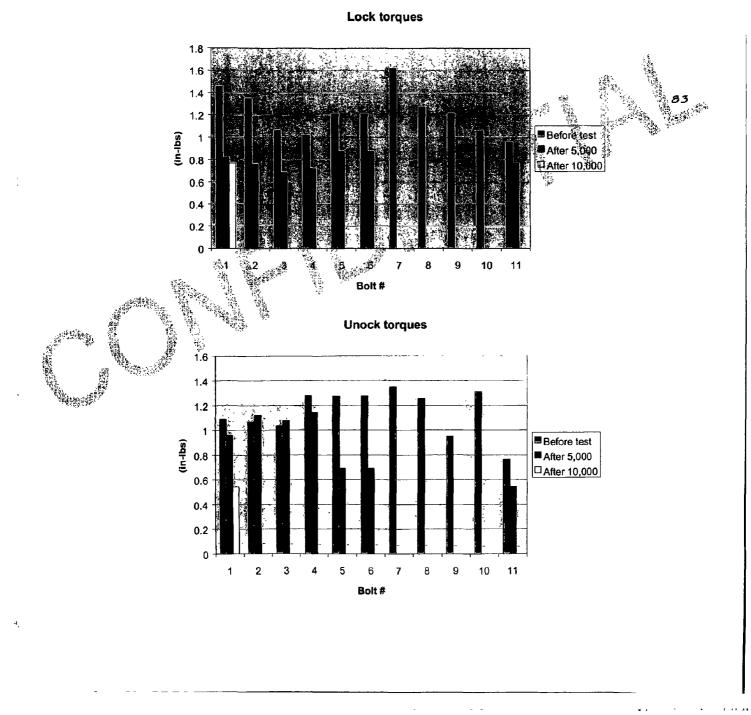
# ET30978

Confidential - Subject 5.22.060007248 Order Williams v. Remington .

.

Measurement #    Bolt 9  Lock torque before test  1.455  1.097  0.986  1.575  0.955  1.21  0.283	Bolt 9  Lock torque before test  1.455  1.097  0.986  1.575  0.955  1.21  0.283	Bolt 9										
Bolt 9  Lock torque before test  1.455  1.097  0.986  1.575  0.955  1.21  0.283    Unlock torque before test  0.934  0.962  0.900  0.983  0.965  0.95  0.032    Bolt 10  Lock torque before test  1.415  1.079  0.977  0.940  0.884  1.06  0.209    Unlock torque before test  1.335  1.304  1.251  1.375  1.288  1.31  0.047    Bolt 11  Lock torque before test  0.959  0.928  0.848  0.832  0.826  0.96  0.061    Bolt 11  Lock torque before test  0.959  0.928  0.848  0.832  0.826  0.96  0.061    Bolt 11  Lock torque before test  0.959  0.928  0.848  0.832  0.826  0.96  0.061    Unlock torque before test  0.959  0.928  0.848  0.832  0.826  0.96  0.061    Unlock torque atter 5000 cycles  0.300  0.786  0.727  0.730	Bolt 9  Lock torque before test  1.455  1.097  0.986  1.575  0.955  1.21  0.283    Unlock torque before test  0.934  0.962  0.900  0.983  0.965  0.95  0.032    Bolt 10  Lock torque before test  1.415  1.079  0.977  0.940  0.884  1.06  0.209    Unlock torque before test  1.415  1.079  0.977  0.940  0.884  1.06  0.209    Unlock torque before test  1.335  1.304  1.251  1.375  1.288  1.31  0.047    Bolt 11  Lock torque before test  0.959  0.928  0.848  0.832  0.826  0.96  0.061    Bolt 11  Lock torque before test  0.959  0.928  0.848  0.832  0.826  0.966  0.061    Unlock torque before test  0.959  0.928  0.848  0.832  0.826  0.966  0.061    Unlock torque before test  0.959  0.928  0.848  0.677  0.75  <	Bolt 9		[[] 4	2				Āve	Std	Dev	
Unlock torque before test  0.934  0.962  0.900  0.983  0.965  0.95  0.032    Bolt 10  Lock torque before test  1.415  1.079  0.977  0.940  0.894  1.06  0.209  1    Unlock torque before test  1.335  1.304  1.251  1.375  1.288  1.31  0.047    Unlock torque before test  0.959  0.928  0.848  0.832  1.826  6.96  0.061    Bolt 11  Lock torque before test  0.959  0.928  0.848  0.832  1.826  6.96  0.061    Bolt 11  Lock torque before test  0.959  0.928  0.848  0.663  0.76  0.175    Unlock torque before test  0.959  0.928  0.684  0.6678  0.663  0.76  0.175    Unlock torque after: \$000 cycles  0.894  0.765  0.77  0.730  0.715  0.77  0.074  19.61    Unlock torque after: \$000 cycles  0.530  0.552  0.546  0.539  0.54	Unlock torque before test  0.934  0.962  0.900  0.983  0.965  0.95  0.032    Bolt 10  Lock torque before test  1.415  1.079  0.977  0.940  0.894  1.06  0.209  1    Unlock torque before test  1.335  1.304  1.251  1.375  1.288  1.31  0.047    Unlock torque before test  0.959  0.928  0.848  0.832  1.826  6.96  0.061    Bolt 11  Lock torque before test  0.959  0.928  0.848  0.832  1.826  6.96  0.061    Bolt 11  Lock torque before test  0.959  0.928  0.848  0.832  0.863  0.76  0.175    Unlock torque before test  0.959  0.928  0.848  0.663  0.76  0.175  1    Unlock torque after 6000 cypies  0.630  0.765  0.777  0.730  0.715  0.77  0.074  19.61    Unlock torque after 6000 cypies  0.630  0.552  0.546  0.539				·	-		_	_	· · ·		
Bolt 10  Lock torque before test  1.415  1.079  0.977  0.940  0.894  1.06  0.209    Unlock torque before test  1.335  1.304  1.251  1.375  1.288  1.31  0.047    Bolt 11  Lock torque before test  1.335  1.304  1.251  1.375  1.288  1.31  0.047    Bolt 11  Lock torque before test  0.959  0.928  0.848  0.832  0.826  6.96  0.061    Bolt 11  Lock torque before test  0.959  0.928  0.848  0.832  0.826  6.96  0.061    Unlock torque before test  1.073  0.742  0.684  0.678  0.683  0.76  0.175    Lock torque after 5000 cycles  0.894  0.786  6.727  0.730  0.715  0.77  0.074  19.61    Unlock torque after 6000 cycles  0.530  0.552  0.546  0.539  0.54  0.009  28.64	I  2  3  4  5  Ave  Std. Dev    Bolt 10  Lock torque before test  1.415  1.079  0.977  0.940  0.894  1.06  0.209		Unlock torque	0.934	0.962	0.900	0.983	0.965	0.95	0.032		
I  2  3  4  5  Ave  Std. Dev    Bolt 10  Lock torque before test  1.415  1.079  0.977  0.940  0.894  1.06  0.209	I  2  3  4  5  Ave  Std. Dev    Bolt 10  Lock torque before test  1.415  1.079  0.977  0.940  0.894  1.06  0.209											
Bolt 10  before test  1.413  1.079  0.977  0.940  0.034  1.08  0.209    Unlock torque before test  1.335  1.304  1.251  1.375  1.288  1.31  0.047    1  2  3  4  5  Ave  Std. Dev  % Drop    Bolt 11  Lock torque before test  0.959  0.928  0.848  0.832  0.826  0.96  0.061    Unlock torque before test  1.073  0.742  0.684  0.678  0.663  0.76  0.175    Lock torque after 5000 cycles  0.394  0.786  0.727  0.730  0.715  0.77  0.074  19.61    Unlock torque after 5000 cycles  0.530  0.552  0.562  0.546  0.539  0.54  0.009  28.64	Bolt 10  before test  1.413  1.079  0.977  0.940  0.034  1.08  0.209    Unlock torque before test  1.335  1.304  1.251  1.375  1.288  1.31  0.047    1  2  3  4  5  Ave  Std. Dev  % Drop    Bolt 11  Lock torque before test  0.959  0.928  0.848  0.832  0.826  0.96  0.061    Unlock torque before test  1.073  0.742  0.684  0.678  0.663  0.76  0.175    Lock torque after 5000 cycles  0.394  0.786  0.727  0.730  0.715  0.77  0.074  19.61    Unlock torque after 5000 cycles  0.530  0.552  0.562  0.546  0.539  0.54  0.009  28.64			1	2				Ave	Std.	Dev	
before test  1.333  1.344  1.231  1.373  1.265  1.31  0.047    1  2  3  4  5  Ave  Std.  Diev  % Drop    Bolt 11  Lock torque before test  0.959  0.928  0.848  0.832  0.826  6.96  0.061	before test  1.333  1.344  1.231  1.373  1.265  1.31  0.047    1  2  3  4  5  Ave  Std.  Diev  % Drop    Bolt 11  Lock torque before test  0.959  0.928  0.848  0.832  0.826  6.96  0.061	Bolt 10	before test	1.415	1.079	0.977	0. <del>9</del> 40	0.894	1.06	0.209		
Measurement #  3 Ave  Std.  % Drap    Bolt 11  Lock torque before test  0.959  0.928  0.848  0.832  0.826  0.96  0.061	Measurement #  3 Ave  Std.  % Drap    Bolt 11  Lock torque before test  0.959  0.928  0.848  0.832  0.826  0.96  0.061		Unlock torque before test	1. <b>335</b>	1.304	1.251	1.375	1. <b>28</b> 8	1.31			
Boit 11  before test  0.959  0.928  0.848  0.832  0.826  0.96  0.061  3    Unlock torque before test  1.073  0.742  0.684  0.678  0.663  0.76  0.175  1    Lock torque after 5000 cycles  0.894  0.786  0.727  0.730  0.715  0.77  0.074  19.61    Unlock torque after 5000 cycles  0.530  0.552  0.562  0.546  0.539  0.54  0.009  28.64	Boit 11  before test  0.959  0.928  0.848  0.832  0.826  0.96  0.061  3    Unlock torque before test  1.073  0.742  0.684  0.678  0.663  0.76  0.175  1    Lock torque after 5000 cycles  0.894  0.786  0.727  0.730  0.715  0.77  0.074  19.61    Unlock torque after 5000 cycles  0.530  0.552  0.562  0.546  0.539  0.54  0.009  28.64					Mea	surémé	nt#		5	1913). 1913) 1914)	22 23 473 4
Boit 11  before test  0.959  0.928  0.848  0.832  0.826  0.966  0.061  3    Unlock torque before test  1.073  0.742  0.684  0.678  0.663  0.76  0.175  1    Lock torque after 5000 cycles  0.894  0.786  6.727  0.730  0.715  0.77  0.074  19.61    Unlock torque after 5000 cycles  0.530  0.552  0.562  0.546  0.539  0.54  0.009  28.64	Boit 11  before test  0.959  0.928  0.848  0.832  0.826  0.966  0.061  3    Unlock torque before test  1.073  0.742  0.684  0.678  0.663  0.76  0.175  1    Lock torque after 5000 cycles  0.894  0.786  6.727  0.730  0.715  0.77  0.074  19.61    Unlock torque after 5000 cycles  0.530  0.552  0.562  0.546  0.539  0.54  0.009  28.64			1	2				Ave	Std. Dev	ू दूः <b>%</b> (	Drop
Unlock torque before test  1.073  0.742  0.684  0.678  0.663  0.76  0.175    Lock torque after 5000 cycles  0.894  0.786  0.727  0.730  0.715  0.77  0.074  19.61    Unlock torque after 5000 cycles  0.530  0.552  0.552  0.546  0.539  0.54  0.009  28.64	Unlock torque before test  1.073  0.742  0.684  0.678  0.663  0.76  0.175    Lock torque after 5000 cycles  0.894  0.786  0.727  0.730  0.715  0.77  0.074  19.61    Unlock torque after 5000 cycles  0.530  0.552  0.552  0.546  0.539  0.54  0.009  28.64	Bolt 11		0.959				0.826			ġ.	
Lock torque after 5000 cycles  0.894  0.786  0.727  0.730  0.715  0.77  0.074  19.61    Unlock torque after 5000 cycles  0.530  0.552  0.562  0.546  0.539  0.54  0.009  28.64	Lock torque after 5000 cycles  0.894  0.786  0.727  0.730  0.715  0.77  0.074  19.61    Unlock torque after 5000 cycles  0.530  0.552  0.562  0.546  0.539  0.54  0.009  28.64		Unlock torque before test	1.073	0.712	0.684	0.678	0.663	0.76	0.175		
after 5000 cysles 0.000   0.000   0.000   0.000   0.000   0.000   20.04	after 5000 cysles 0.000   0.000   0.000   0.000   0.000   0.000   20.04		5000 cycles	Q 894	0.786	0.727	0.730	0.715	0.77	0.074	19.61	
			Unlock torque	0.530	0.552	0.552	0.546	0.539	0.54	0.009	28.64	
			,									

•


Confidential - Shiper 5.22.060007247 Order Williams v. Remington

# 710 ISS Torques

10/15/01

#### Scott,

Here is data and graphs for the ISS torques before and after testing. The bolt that was cycled 10,000 times is called Bolt 1. Bolts 2-5 are the bolts cycled 5,000 times, and bolt 11 is the bolt with the old-style ISS.



# **Bolt Torques**

				Measureme	ent #			
		1	2	3	4	5	Average	Std. Dev
Bolt 1	Lock torque before test	1.713667	1.769145	1.300661	1.272922	1.223608	1.456	0.262729
	Unlock torque before test	1. <b>13422</b> 6	1.195868	1.035597	1.091076	0.992447	1.089843	0.080064
	Lock torque after 5000 cycles	0.906148	0.859916	0.810601	0.776698	0.758205	0.822314	0.060766
	Unlock torque after 5000 cycles	0.899983	0.912312	1.01094	0.992447	0.977037	0.958544	0.049506
	Lock torque after 10000 cycles	0.893819	0. <b>785</b> 944		0.730466	0.715055	0.770534	0.074132
	Unlock torque after 10000 cycles	0.5 <b>3</b> 0127	0.551702	0.551702	0.545538	0.539374	0.543689	0.009143
				Measureme	ent#			
		1	2	3	4	5	Average	Std. Dev
Bolt 2	Lock torque before test	1.605792	1.380796	1.519492	1.171211	1.057172	1.346893	0230636
	Unlock torque before test	1.066419	1.109569	0.973955	1.060254	1.124979	1.067035	<b>Q.0589</b>
	Lock torque after 5000 cycles	0.912312	0.776698	0.696562		0.67807	0.760671,	0.093636
	Unlock torque after 5000 cycles	1.288332	1.032515	1.0 <b>5409</b>	1.131149	1.103404	1.121897	50 100 <b>89</b>
				Measurem	ent#			
<b>.</b>		1	2,	3	4	5 W 1	Average	Std. Dev
Bolt 3	Lock torque before test	1.223608	1.057472	1.041762		0,986283	1.06272	0.09428
	Unlock torque before test	1.081829	0,99553	1.063337	15 G G D A L	1.032515	1.034364	
	Lock torque after 5000 cycles	0.65093	- 12 and - 12 feet	0.641084			0.68485	0.067996
	Unlock torque after 5000 cycles	1.161965	1.18354	1.020187	1.100322	0.918476	1.076898	0.108939
	1. 19 - 19 - 19 - 19 - 19 - 19 - 19 - 19	287) 500 200		Measurem	ont#			
		- 12 - 12	2 2	3	4	5	Average	Std. Dev
Bolt 4	Lock torque before test	1.094198	1.032515	1.001694	0.980119	0.983201	-	0.047228
DOILY	Unlock torque before test	1.263675	1.337647	1.3284	1.174293	1.282168	1.277237	
	Lock torque after 5000 cycles	0.745877		0.718137		0.718137	0.72122	
្មាយដែរស្រុកក្តី សូមរាជ សូមរាជ	Unlock torque after 5000 cycles	1.235936	1.211279	-	1.112651	1.004776	1.145938	
je Ber Ber								
				Measurem	ent #			
		1	2	3	4	5	Average	Std. Dev
Bolt 5 🔊 👘	Cock torque before test	1.37155	1.177376	1.208197	1. <b>18970</b> 4	1.115733		0.095437
	Uniock torque before test	1.396207	1.300661	1.359221	1.214361	1.106486	1.275387	0.116743
°Q₽ _{₽₽} ₽₽₽₽₽₽₽₽	Lock torque after 5000 cycles	1.029433	0.86608	0.856833	0.801355	0.829094	0.876559	
	Unlock torque after 5000 cycles	0.684234	0.711973	0.702727	0.690398	0.665741	0.691015	0.017759
				Measurem	ent #			
		1	2	3	4	5	Average	Std. Dev
Bolt 6	Lock torque before test	1.37155	1.177376	1.208197	1.189704	1.115733	1.212512	0.095437
	Unlock torque before test	1.396207	1.300661	1.359221	1.214361	1.106486	1.275387	0.116743
	Lock torque after 5000 cycles	1.029433	0.86608	0.856833	0.801355	0.829094	0.876559	0.089132
	Unlock torque after 5000 cycles	0.684234	0.711973	0.702727	0.690398	0.665741	0.691015	0.017759
				Measurem	ent#			
		1	2	3	4	5	Average	Std. Dev
Bolt 7	Lock torque before test	1.972566	1.870856	1.51641	1.470178	1.260593	1.618121	0.29562
	Unlock torque before test	1.368468	1.365386	1.405453	1.303743		1.350591	
	eriesii terdae eelere teet							0.010001

# BARBER - 5.22.06r0007250

( A

far.

'w

				Measurem	ent#			
	· · · · · · · · · · · · · · · · · · ·	· - · <b>-1</b> -	·2		4.		Average	Std. Dev
Bolt 8	Lock torque before test	1.821542	1.300661	1.112651	1.075665	1.051008	1.272305	0.322333
	Unlock torque before test	1.09724	1.229772	1.390043	1.297579	1.260593	1.255045	0.106777
				Measurem	ent#		_	
		1	2	3	4			Std. Dev
Bolt 9	Lock torque before test	1.454768		0.986283				0.283107
	Unlock torque before test	0.933887	0.961626	0.899983	0.983201	0.964708	0.948681	0.032420
				Measurem	ent#			
		1	2	3	4			Std. Dev
Bolt 10	Lock torque before test			0.977037				0.209193
	Unlock torque before test	1.334564	1.303743	1.251347	1.374632	1.288332	1.310524	0.046712
				Measurem	ent#			
		1	2	3	4	5	Average	Std. Dev
Bolt 11	Lock torque before test	0.958544		0.847587	0.832176			
	Unlock torque before test	1.072583		0.684234				0.174589
	Lock torque after 5000 cycles			0.727384				1.665
	Unlock torque after 5000 cycles	0.530127	0.551702	0.551702	0.545538	0.539374	0.543689	0.009143
						1997 1997		2.83 and
					and Mark	972 - 532 972		
						, R	22	See you
			1.10				য়ু - মূর মুঠ	
			مان کې د د د. مېرې کې					
			2		624 : 102 **: 634 **: 644			
		- 1997年1月1日 - 1997年1月1日 - 1997年1月1日 - 1997年1月1日 - 1997年1月1日	and the second sec		- 19 E B S			
	: :**:	(4)17 - 111 (3)2 (年)1		94. 198				
		nn Ng		a di ka King S Manangan Manangan				
	\$ 👰		<i>a</i>					
		-af						
្រុះ សូម សូមីន								
ະເພາະ ເຊິ່ງ ເຊິ່ງນີ້								
1000 - 111 1200 - 111								
ESA.								

ET30982

Confidential - States 5.22.060007258 Order Williams v. Remington