Dale Danner

Not knowing the repeatability aspects of a torque knob, I don't think we can make.a.dudgement at this point? What Brian has provided is the range of the torque regiied, with that we can now review the torque knobs in that range and obtain the repeatability spec'storthestorque knob. The exact torque per Brians calculations is not required, the ability to adjust the torque withing Eitans range is the critical factor. Mayfield will be able to fine tune the torque setting based on calibrationiwitiolihe assembled firearm digital force measurement. At that point, the question of sapoblitywiusooniswered?

$>----$ Original Message----

$>$ From: Danner, Dale
>Sent: Wednesday, August 02, 2000 5:27 PM
$>$ To: Franz, Scott; Keeney, Mike; Rages, Brian \&
>Subject: RE: 710 Sear Loading Fixture Scley. Force
$>$
 adjustment. Other thoughts. . . Dale
$>$
\qquad
$>\quad$ From: Rages, Brian L
$>$ Sent: Wednesday, August 02, zoo0 3:38 PM
$>\quad$ To: Danner, Dale; Franz, Sooty, Keeney, Mike
$>\quad$ Subject: $\quad 710$ Sear Loadigig.jixture Screw Force
$>$
$>$
$>$

If friction is neglected, a $0.473,7 \%-\%$ torque on the sear loading screw is necessary to result in a 11.4 pound force at the sear (the load I caluulated fearlier).
$>$
$>\quad$ If a thread coefficient of sifiction of 0.05 is used, the resultant torque is $0.799 \mathrm{in}-\mathrm{Oz}$.
$>\quad$ With a thread coefficieqtit of fricion of 0.2 , the necessary torque rises to $1.79 \mathrm{in}-\mathrm{oz}$.
$>\quad$ Assuming no changes in geomietiy. a linear relationship between screw torque and sear force exists -- a 5% deviation ingtargue will resuiluo, $\% 5 \%$ deviation is sear force.
$>$
$>\quad$ Does the 0.473 in-oz torgievosound low? I calculated that the screw must supply a 3.72 pound horizontal force to result in a 11.4 poumidwitical force. Consider the force-multiplying wedge and that

$>$
> -- Brian
$>$

