Model 710 Firing Pin Head Finite Element Analysis Brian Rages
 1/25/00

OBJECTIVE

The purpose of this analysis is to evaluate the distribution of stress through the cam surface of a firing pin head developed for the Remington Model 710 rifle.

CONCLUSIONS

An ANSYS model was used to predict stress distribution in the firing pin head resulting from bolt-opening forces. Two areas of high stress were predicted. Along tieie $0.004-\mathrm{inch}$ wide contact surface between the firing pin head and the bolt body sttess wás predicted ${ }^{83}$ to be around $120,000 \mathrm{psi}$, below the $190,000 \mathrm{psi}$ yield strengthof the haterial At smalice patches at the ends of this surface, however, predicted stess rose well oyer 200,000 psi. It is likely that a small degree of plastic deformation willoccur atthese patches, widening the contact area until the stress is spread gut beloy the material's vield strength.

Another location of significant-stress accurred on the edge of the lateral constraint applied on the firing pin head by the boly plug. Stress along the edge was predicted by the ANSYS analysis to be nound 30,000 .psi, with a peak of 53,000 psi occurring in a small area at the end of the patch.

Theloading conditions at the firing pin head were calculated as follows:
The bolt body cam surface is a helix with 2.18 inches of rise per turn. The angle of a surface on the helix is given by

$$
\theta=\tan ^{-1} \frac{2.18}{\pi \cdot d}
$$

where d is the diameter of the location on the helix. Using d values of 0.498 and 0.695 , the inner and outer diameters of the bolt body, resulted in slopes of 55 and 45 degrees, respectively. The average, a slope of 50 degrees, was used to calculate forces.

Figure 1 depicts the stress situätion in the firing pith head. B represents the normal force applied to the firing pin head by thepoti body. F is the frictional force applied to the firing pin head by: the bolt tody. Tupresentst the force applied to the firing pin head by the firing pithspring. Lis the lateraf fore applied by the bolt plug on the firing pin head. F is relâted too B bys.

Where μ represents the coefficient of friction between the two surfaces. Mark's
Engineering Handbook gives μ values for steel-on-steel contact of 0.4 to 0.01 , depending on lubrication. 0.4 , the value for dry contact, was used.

The vertical components of the forces in Figure 1 were added and set to zero, resulting in

$$
T+F y-B y=0
$$

The y components of B and F are given by

$$
F y=F \cos 50^{\circ}=B \mu \cos 50^{\circ}
$$

and

$$
B y=B \sin 40^{\circ}
$$

resulting in

$$
T+B \mu \cos 50^{\circ}-B \sin 40^{\circ}=0
$$

From the spring specifications, T is 20 lbs . The above equation may be solved for B as

$$
B=\frac{20}{\sin 40^{\circ}-0.4 \cos 50^{\circ}}=51.86 \text { pounds }
$$

Friction may be solved for from B :

$$
F=\mu \cdot B=0.4 \cdot 51.86=20.74 \text { pounds }
$$

Roark's Formulas for Stress \& Strain gives the following equation for width of a coutact patch in the interface between a cylinder and flat plate if both materials havedapoissom's ratio of 0.3 and share the same modulus of elasticity:

where b is the contact patch width p is the force over the tength of the cylinder, K_{D} is the diameter of the cylinder, and E is the modulus of elasticity for the the plate and cylinder. Entering the appropriate vatues for the fïing pinhead to bolt body interface gives

The analysis was conducted on a CADDS 5 model of the firing pin head developed for the Remington Model 710. The CADDS model was simplified by the removal of all fillets not in the area of the cam surface. Faces on the model were split to provide a location to apply the side constraints and cam surface pressure. The model was brought into ANSYS. It was meshed with 10 -node tetrahedral elements using the ANSYS Smartmesh tool with a coarseness level of six. The areas of the protrusion on which the cam surface acted were refined with ANSYS's Meshtool and a refinement level of one. The meshed model may be seen in Figure 2.

Figure 2. Meshed model of firing pin head.

Figure 3. Constraints placed on model.

The model was constrained as follows: A longitudinal displacement constraint and a vertical displacement constraint were placed on the cylindrical area where the firing pin head attached to the firing pin. The lateral position of the firing pin head was fixed by placing displacement constraints on the areas where the bolt plug cradled the cam surface protrusion of the firing pin head. The location of the displacement constraints may be seen in Figure 3.

The load on 青e cam surface thas3 appledin two componetits, Thes force nômal tótithe eam surface was appled as $\operatorname{Ma}_{1} 158,000-\mathrm{psi}$ pressure bver the entire 0.0041 wide area. This represented a force of 51.86 pounds. The $\$$ econd component of the cam surface load was the force applied by the frietion between the cam surface of the firing pin head and the bolt body. This was applied by selecting all the nodes on the 0.0041 inch wide area, rotatity the node cogrditate system 50 degrees and applying a force to each node in the negatike y directiontof the new coordinate system. The mesh had resulted in 317 nodes onthe contatt area, so the frictional force of 20.74 pounds was品plied as a fete of 0.06544 pounds per node.

Afer the model had been fully constrained and loaded, the analysis was solved using the ANSYS PCG solver with a tolerance of 10^{-8}.

Figure 4. Stress distribution in firing pin head.
The Von Mises stress distribution predicted by the ANSYS model may be seen in Figure 4. Peak stress is concentrated in the 0.004 -inch wide contact patch. Stress along the contact patch surface runs around 120,000 psi. Both the bottom and top ends of this patch contain areas, shown in gray on the above figure, where stress exceeds the 190,000 psi yield strength of the firing pin head material. One node on the bottom area returned a stress over $500,000 \mathrm{psi}$. The firing pin head may be expected to deform plastically in the regions at the ends of the contact patch. Plastic deformation in these areas will widen the contact patch area even out the stress distribution until stresses are below the yield strength of the material.

Another location of significant stress is farther back on the protrusion of the firing pin head, at the edge of the area where lateral constraints were applied. Stress in this location runs around $30,000 \mathrm{psi}$, peaking at $53,000 \mathrm{psi}$ at the top end of the edge. The same pattern and levels of stress occur on the other side of the part.

APPENDIX

This appendix contains an enlarged Figure 4, as well as other views of the stress results.

RNSYS 5.5.1
JRN 24 2000
16:13:52
NODFL SOLUTION
$S T E P=1$
SUB $=1$
TIME $=1$
SEQV
(RVG)
PowerGraphies
EFACET=1
RVRES=Mat
DMX $=.486 E-03$
SMN $=13.461$
SMX $=413833$
$\square \square$
21111
42222
63333
84444
105556
126667
$14777 B$
168889
190000

Figure 6. Von Mises stress distribution, closeup of cathact patch.

